Skip to main content
Top
Published in: Discover Oncology 1/2021

Open Access 01-12-2021 | Osteosarcoma | Research

A genome-wide expression profile of noncoding RNAs in human osteosarcoma cells as they acquire resistance to cisplatin

Authors: Harshita Sharma, Divya Niveditha, Rajdeep Chowdhury, Sudeshna Mukherjee, Shibasish Chowdhury

Published in: Discover Oncology | Issue 1/2021

Login to get access

Abstract

Background

Recurrence after cisplatin therapy is one of the major hindrances in the management of cancer. This necessitates a deeper understanding of the molecular signatures marking the acquisition of resistance. We therefore modeled the response of osteosarcoma (OS) cells to the first-line chemotherapeutic drug cisplatin. A small population of nondividing cells survived acute cisplatin shock (persisters; OS-P). These cells regained proliferative potential over time re-instating the population again (extended persisters; OS-EP).

Result

In this study, we present the expression profile of noncoding RNAs in untreated OS cells (chemo-naive), OS-P, OS-EP and drug-resistant (OS-R) cells derived from the latter. RNA sequencing was carried out, and thereafter, differential expression (log2-fold ± 1.5; p value ≤ 0.05) of microRNAs (miRNAs) was analyzed in each set. The core set of miRNAs that were uniquely or differentially expressed in each group was identified. Interestingly, we observed that most of each group had their own distinctive set of miRNAs. The miRNAs showing an inverse correlation in expression pattern with mRNAs were further selected, and the key pathways regulated by them were delineated for each group. We observed that pathways such as TNF signaling, autophagy and mitophagy were implicated in multiple groups.

Conclusion

To the best of our knowledge, this is the first study that provides critical information on the variation in the expression pattern of ncRNAs in osteosarcoma cells and the pathways that they might tightly regulate as cells acquire resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bielack S, Jürgens H, Jundt G, Kevric M, Kühne T, Reichardt P, et al. Osteosarcoma: the COSS experience. In: Cancer Treatment and Research. 2009. Bielack S, Jürgens H, Jundt G, Kevric M, Kühne T, Reichardt P, et al. Osteosarcoma: the COSS experience. In: Cancer Treatment and Research. 2009.
2.
go back to reference Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. 2018. Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. 2018.
3.
go back to reference Bacci G, Ferrari S, Longhi A, Perin S, Forni C, Fabbri N, et al. Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy. Eur J Cancer. 2001;37(1):32–8.PubMedCrossRef Bacci G, Ferrari S, Longhi A, Perin S, Forni C, Fabbri N, et al. Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy. Eur J Cancer. 2001;37(1):32–8.PubMedCrossRef
4.
go back to reference Bacci G, Rocca M, Salone M, Balladelli A, Ferrari S, Palmerini E, et al. High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol. 2008;98(6):415–20.PubMedCrossRef Bacci G, Rocca M, Salone M, Balladelli A, Ferrari S, Palmerini E, et al. High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol. 2008;98(6):415–20.PubMedCrossRef
5.
go back to reference Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006;6(7):1075–85.PubMedCrossRef Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006;6(7):1075–85.PubMedCrossRef
6.
go back to reference Blay JY. Chemotherapy for osteosarcoma without high-dose methotrexate: another piece in the puzzle. Onkologie. 2007;30(5):226–7.PubMed Blay JY. Chemotherapy for osteosarcoma without high-dose methotrexate: another piece in the puzzle. Onkologie. 2007;30(5):226–7.PubMed
7.
go back to reference Ferrari S, Palmerini E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol. 2007;19(4):341–6.PubMedCrossRef Ferrari S, Palmerini E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol. 2007;19(4):341–6.PubMedCrossRef
8.
go back to reference Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinform. 2016;14:42–54.CrossRef Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinform. 2016;14:42–54.CrossRef
9.
go back to reference Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenet. 2019;11(1):1–24.CrossRef Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenet. 2019;11(1):1–24.CrossRef
10.
go back to reference Yang T, Shi Y, Yildirim E. Implications of long noncoding RNAs in cancer epigenetics. In: Chakrabarti J, Mitra S, editors. Translational epigenetics, cancer and noncoding RNAs. Academic Press; 2018. pp. 381–406. Yang T, Shi Y, Yildirim E. Implications of long noncoding RNAs in cancer epigenetics. In: Chakrabarti J, Mitra S, editors. Translational epigenetics, cancer and noncoding RNAs. Academic Press; 2018. pp. 381–406. 
11.
go back to reference Rna N, Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.CrossRef Rna N, Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.CrossRef
12.
go back to reference Sinha S, Boila LD, Chatterjee SS, Sengupta A. miRNA and cancer: a deadly liaison? In: Chakrabarti J, Mitra S, editors. Translational epigenetics, cancer and noncoding RNAs. Academic Press; 2018. pp. 27–46. Sinha S, Boila LD, Chatterjee SS, Sengupta A. miRNA and cancer: a deadly liaison? In: Chakrabarti J, Mitra S, editors. Translational epigenetics, cancer and noncoding RNAs. Academic Press; 2018. pp. 27–46.
13.
go back to reference Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 2018;75:467–84.PubMedCrossRef Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 2018;75:467–84.PubMedCrossRef
16.
go back to reference Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance-related microRNAs in osteosarcoma: translating basic evidence into therapeutic strategies. J Cell Mol Med. 2019;23(4):2280–92.PubMedPubMedCentralCrossRef Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance-related microRNAs in osteosarcoma: translating basic evidence into therapeutic strategies. J Cell Mol Med. 2019;23(4):2280–92.PubMedPubMedCentralCrossRef
17.
go back to reference Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, et al. Potential regulatory role of lncRNA–miRNA–mRNA axis in osteosarcoma. Biomed Pharmacother. 2020;121:109627.PubMedCrossRef Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, et al. Potential regulatory role of lncRNA–miRNA–mRNA axis in osteosarcoma. Biomed Pharmacother. 2020;121:109627.PubMedCrossRef
18.
go back to reference Mukherjee S, Dash S, Lohitesh K, Chowdhury R. The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS ONE. 2017;12(6):e0179203.PubMedPubMedCentralCrossRef Mukherjee S, Dash S, Lohitesh K, Chowdhury R. The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS ONE. 2017;12(6):e0179203.PubMedPubMedCentralCrossRef
19.
go back to reference Chowdhury R, Chowdhury S, Roychoudhury P, Mandal C, Chaudhuri K. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis. 2009;14(1):108–23.PubMedCrossRef Chowdhury R, Chowdhury S, Roychoudhury P, Mandal C, Chaudhuri K. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis. 2009;14(1):108–23.PubMedCrossRef
20.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.PubMedCrossRef
21.
go back to reference Ray U, Roy SS, Chowdhury SR. Lysophosphatidic acid promotes epithelial to mesenchymal transition in ovarian cancer cells by repressing SIRT1. Cell Physiol Biochem. 2017;41:795–805.PubMedCrossRef Ray U, Roy SS, Chowdhury SR. Lysophosphatidic acid promotes epithelial to mesenchymal transition in ovarian cancer cells by repressing SIRT1. Cell Physiol Biochem. 2017;41:795–805.PubMedCrossRef
22.
go back to reference Niveditha D, Mukherjee S, Majumder S, Chowdhury R, Chowdhury S. A global transcriptomic pipeline decoding core network of genes involved in stages leading to acquisition of drug-resistance to cisplatin in osteosarcoma cells. Bioinformatics. 2019;35:1701–11.PubMedCrossRef Niveditha D, Mukherjee S, Majumder S, Chowdhury R, Chowdhury S. A global transcriptomic pipeline decoding core network of genes involved in stages leading to acquisition of drug-resistance to cisplatin in osteosarcoma cells. Bioinformatics. 2019;35:1701–11.PubMedCrossRef
23.
go back to reference Hao S, Tian W, Chen Y, Wang L, Jiang Y, Gao B, et al. MicroRNA-374c-5p inhibits the development of breast cancer through TATA-box binding protein associated factor 7-mediated transcriptional regulation of DEP domain containing 1. J Cell Biochem. 2019;120:15360–8.PubMedPubMedCentralCrossRef Hao S, Tian W, Chen Y, Wang L, Jiang Y, Gao B, et al. MicroRNA-374c-5p inhibits the development of breast cancer through TATA-box binding protein associated factor 7-mediated transcriptional regulation of DEP domain containing 1. J Cell Biochem. 2019;120:15360–8.PubMedPubMedCentralCrossRef
24.
go back to reference Wilczyński M, Żytko E, Szymańska B, Dzieniecka M, Nowak M, Danielska J, et al. Expression of miR-146a in patients with ovarian cancer and its clinical significance. Oncol Lett. 2017;14:3207–14.PubMedPubMedCentralCrossRef Wilczyński M, Żytko E, Szymańska B, Dzieniecka M, Nowak M, Danielska J, et al. Expression of miR-146a in patients with ovarian cancer and its clinical significance. Oncol Lett. 2017;14:3207–14.PubMedPubMedCentralCrossRef
25.
go back to reference Chijiiwa Y, Moriyama T, Ohuchida K, Nabae T, Ohtsuka T, Miyasaka Y, et al. Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL. Int J Oncol. 2016;48:1688–700.PubMedCrossRef Chijiiwa Y, Moriyama T, Ohuchida K, Nabae T, Ohtsuka T, Miyasaka Y, et al. Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL. Int J Oncol. 2016;48:1688–700.PubMedCrossRef
26.
go back to reference Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, et al. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol. 2019;11:957–70.PubMedPubMedCentralCrossRef Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, et al. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol. 2019;11:957–70.PubMedPubMedCentralCrossRef
27.
go back to reference Lin SL, Lin YH, Chi HC, Lin TK, Chen WJ, Yeh CT, et al. A novel long non-coding RNA-01488 suppressed metastasis and tumorigenesis by inducing miRNAs that reduce vimentin expression and ubiquitination of cyclin E. Cells. 2020;9(6):1504.PubMedCentralCrossRef Lin SL, Lin YH, Chi HC, Lin TK, Chen WJ, Yeh CT, et al. A novel long non-coding RNA-01488 suppressed metastasis and tumorigenesis by inducing miRNAs that reduce vimentin expression and ubiquitination of cyclin E. Cells. 2020;9(6):1504.PubMedCentralCrossRef
28.
go back to reference Li S, Wu D, Jia H, Zhang Z. Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death Dis. 2020;11(8):1–12.PubMedPubMedCentralCrossRef Li S, Wu D, Jia H, Zhang Z. Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death Dis. 2020;11(8):1–12.PubMedPubMedCentralCrossRef
29.
go back to reference Li Z, Feng C, Guo J, Hu X, Xie D. GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. Funct Integr Genom. 2020;20:17–28.CrossRef Li Z, Feng C, Guo J, Hu X, Xie D. GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. Funct Integr Genom. 2020;20:17–28.CrossRef
30.
go back to reference Zheng JZ, Huang YN, Yao L, Liu YR, Liu S, Hu X, et al. Elevated miR-301a expression indicates a poor prognosis for breast cancer patients. Sci Rep. 2018;8:1–11. Zheng JZ, Huang YN, Yao L, Liu YR, Liu S, Hu X, et al. Elevated miR-301a expression indicates a poor prognosis for breast cancer patients. Sci Rep. 2018;8:1–11.
31.
32.
go back to reference Gu C, Cai J, Xu Z, Zhou S, Ye L, Yan Q, et al. MiR-532-3p suppresses colorectal cancer progression by disrupting the ETS1/TGM2 axis-mediated Wnt/β-catenin signaling. Cell Death Dis. 2019;10(10):1–14.CrossRef Gu C, Cai J, Xu Z, Zhou S, Ye L, Yan Q, et al. MiR-532-3p suppresses colorectal cancer progression by disrupting the ETS1/TGM2 axis-mediated Wnt/β-catenin signaling. Cell Death Dis. 2019;10(10):1–14.CrossRef
33.
go back to reference Guo X, Chen Z, Zhao L, Cheng D, Song W, Zhang X. Long non-coding RNA-HAGLR suppressed tumor growth of lung adenocarcinoma through epigenetically silencing E2F1. Exp Cell Res. 2019;382:111461.PubMedCrossRef Guo X, Chen Z, Zhao L, Cheng D, Song W, Zhang X. Long non-coding RNA-HAGLR suppressed tumor growth of lung adenocarcinoma through epigenetically silencing E2F1. Exp Cell Res. 2019;382:111461.PubMedCrossRef
34.
go back to reference Xiong G, Huang H, Feng M, Yang G, Zheng S, You L, et al. MiR-10a-5p targets TFAP2C to promote gemcitabine resistance in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 2018;37:1–15.CrossRef Xiong G, Huang H, Feng M, Yang G, Zheng S, You L, et al. MiR-10a-5p targets TFAP2C to promote gemcitabine resistance in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 2018;37:1–15.CrossRef
35.
go back to reference Geng J, Liu Y, Jin Y, Tai J, Zhang J, Xiao X, et al. MicroRNA-365a-3p promotes tumor growth and metastasis in laryngeal squamous cell carcinoma. Oncol Rep. 2016;35:2017–26.PubMedCrossRef Geng J, Liu Y, Jin Y, Tai J, Zhang J, Xiao X, et al. MicroRNA-365a-3p promotes tumor growth and metastasis in laryngeal squamous cell carcinoma. Oncol Rep. 2016;35:2017–26.PubMedCrossRef
36.
go back to reference Wang X, Liu Z, Tong H, Peng H, Xian Z, Li L, et al. Linc01194 acts as an oncogene in colorectal carcinoma and is associated with poor survival outcome. Cancer Manag Res. 2019;11:2349–62.PubMedPubMedCentralCrossRef Wang X, Liu Z, Tong H, Peng H, Xian Z, Li L, et al. Linc01194 acts as an oncogene in colorectal carcinoma and is associated with poor survival outcome. Cancer Manag Res. 2019;11:2349–62.PubMedPubMedCentralCrossRef
37.
go back to reference Zhong Y, Lu Q, Qiu W, Luo Y. LINC00636 promotes lymph node metastasis and cervical cancer through targeting NM23. Biosci Rep. 2020;40:1–10.CrossRef Zhong Y, Lu Q, Qiu W, Luo Y. LINC00636 promotes lymph node metastasis and cervical cancer through targeting NM23. Biosci Rep. 2020;40:1–10.CrossRef
38.
go back to reference Wang Y, Bao W, Liu Y, Wang S, Xu S, Li X, et al. MIR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis. 2018;9(5):1–17.CrossRef Wang Y, Bao W, Liu Y, Wang S, Xu S, Li X, et al. MIR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis. 2018;9(5):1–17.CrossRef
39.
go back to reference Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in solid tumors: a review based on mechanisms and clinical observations. Front Oncol. 2019;9:893.PubMedPubMedCentralCrossRef Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in solid tumors: a review based on mechanisms and clinical observations. Front Oncol. 2019;9:893.PubMedPubMedCentralCrossRef
40.
go back to reference Su C, Huang DP, Liu JW, Liu WY, Cao YO. miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol Lett. 2019;18:2825–34.PubMedPubMedCentral Su C, Huang DP, Liu JW, Liu WY, Cao YO. miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol Lett. 2019;18:2825–34.PubMedPubMedCentral
41.
go back to reference Yan X, Yu H, Liu Y, Hou J, Yang Q, Zhao Y. miR-27a-3p functions as a tumor suppressor and regulates non-small cell lung cancer cell proliferation via targeting HOXB8. Technol Cancer Res Treat. 2019;18:1–7.CrossRef Yan X, Yu H, Liu Y, Hou J, Yang Q, Zhao Y. miR-27a-3p functions as a tumor suppressor and regulates non-small cell lung cancer cell proliferation via targeting HOXB8. Technol Cancer Res Treat. 2019;18:1–7.CrossRef
42.
go back to reference Swayden M, Chhouri H, Anouar Y, Grumolato L. Tolerant/persister cancer cells and the path to resistance to targeted therapy. Cells. 2020;9:1–13.CrossRef Swayden M, Chhouri H, Anouar Y, Grumolato L. Tolerant/persister cancer cells and the path to resistance to targeted therapy. Cells. 2020;9:1–13.CrossRef
43.
go back to reference De Conti G, Dias MH, Bernards R. Fighting drug resistance through the targeting of drug-tolerant persister cells. Cancers. 2021;13:1–15.CrossRef De Conti G, Dias MH, Bernards R. Fighting drug resistance through the targeting of drug-tolerant persister cells. Cancers. 2021;13:1–15.CrossRef
44.
45.
go back to reference Omura T, Shimada Y, Nagata T, Okumura T, Fukuoka J, Yamagishi F, et al. Relapse-associated microRNA in gastric cancer patients after S-1 adjuvant chemotherapy. Oncol Rep. 2014;31:613–8.PubMedCrossRef Omura T, Shimada Y, Nagata T, Okumura T, Fukuoka J, Yamagishi F, et al. Relapse-associated microRNA in gastric cancer patients after S-1 adjuvant chemotherapy. Oncol Rep. 2014;31:613–8.PubMedCrossRef
46.
go back to reference Aakko S, Straume AH, Birkeland EE, Chen P, Qiao X, ’Lønning PE, et al. MYC-induced miR-203b-3p and miR-203a-3p control Bcl-xL expression and paclitaxel sensitivity in tumor cells. Transl Oncol. 2019;12:170–9.PubMedCrossRef Aakko S, Straume AH, Birkeland EE, Chen P, Qiao X, ’Lønning PE, et al. MYC-induced miR-203b-3p and miR-203a-3p control Bcl-xL expression and paclitaxel sensitivity in tumor cells. Transl Oncol. 2019;12:170–9.PubMedCrossRef
47.
go back to reference Ma R, Zhao Y, He M, Zhao H, Zhang Y, Zhou S, et al. Identifying a ten-microRNA signature as a superior prognosis biomarker in colon adenocarcinoma. Cancer Cell Int. 2019;19:1–16.CrossRef Ma R, Zhao Y, He M, Zhao H, Zhang Y, Zhou S, et al. Identifying a ten-microRNA signature as a superior prognosis biomarker in colon adenocarcinoma. Cancer Cell Int. 2019;19:1–16.CrossRef
48.
go back to reference Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D, et al. MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int. 2015;15:1–8.CrossRef Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D, et al. MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int. 2015;15:1–8.CrossRef
49.
go back to reference Wang K, Yang S, Gao Y, Zhang C, Sui Q. MicroRNA-769-3p inhibits tumor progression in glioma by suppressing ZEB2 and inhibiting the Wnt/ß-catenin signaling pathway. Oncol Lett. 2020;19:992–1000.PubMed Wang K, Yang S, Gao Y, Zhang C, Sui Q. MicroRNA-769-3p inhibits tumor progression in glioma by suppressing ZEB2 and inhibiting the Wnt/ß-catenin signaling pathway. Oncol Lett. 2020;19:992–1000.PubMed
50.
go back to reference Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, et al. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int. 2018;18:1–14.CrossRef Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, et al. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int. 2018;18:1–14.CrossRef
51.
go back to reference Hong S, Li S, Bi M, Yu H, Yan Z, Liu T, et al. Long non-coding RNA ILF3-AS1 promotes proliferation and metastasis of colorectal cancer cells by recruiting histone methylase EZH2 to induce H3K27me3 and downregulate CDKN2A. Mol Ther Nucleic Acids. 2021;24:1012–23.PubMedPubMedCentralCrossRef Hong S, Li S, Bi M, Yu H, Yan Z, Liu T, et al. Long non-coding RNA ILF3-AS1 promotes proliferation and metastasis of colorectal cancer cells by recruiting histone methylase EZH2 to induce H3K27me3 and downregulate CDKN2A. Mol Ther Nucleic Acids. 2021;24:1012–23.PubMedPubMedCentralCrossRef
52.
go back to reference Cheng C, Wang Q, Zhu M, Liu K, Zhang Z. Integrated analysis reveals potential long non-coding RNA biomarkers and their potential biological functions for disease free survival in gastric cancer patients. Cancer Cell Int. 2019;19:1–17.CrossRef Cheng C, Wang Q, Zhu M, Liu K, Zhang Z. Integrated analysis reveals potential long non-coding RNA biomarkers and their potential biological functions for disease free survival in gastric cancer patients. Cancer Cell Int. 2019;19:1–17.CrossRef
53.
go back to reference Qian C, Xu Z, Chen L, Wang Y, Yao J. Long noncoding RNA LINC01391 restrained gastric cancer aerobic glycolysis and tumorigenesis via targeting miR-12116/CMTM2 axis. J Cancer. 2020;11:6264–76.PubMedPubMedCentralCrossRef Qian C, Xu Z, Chen L, Wang Y, Yao J. Long noncoding RNA LINC01391 restrained gastric cancer aerobic glycolysis and tumorigenesis via targeting miR-12116/CMTM2 axis. J Cancer. 2020;11:6264–76.PubMedPubMedCentralCrossRef
54.
go back to reference Li N, Yang L, Wang H, Yi T, Jia X, Chen C, et al. MiR-130a and MiR-374a function as novel regulators of cisplatin resistance in human ovarian cancer A2780 cells. PLoS ONE. 2015;10:1–12. Li N, Yang L, Wang H, Yi T, Jia X, Chen C, et al. MiR-130a and MiR-374a function as novel regulators of cisplatin resistance in human ovarian cancer A2780 cells. PLoS ONE. 2015;10:1–12.
55.
go back to reference Azuma Y, Yokobori T, Mogi A, Yajima T, Kosaka T, Iijima M, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today. 2020;50:1099–106.PubMedCrossRef Azuma Y, Yokobori T, Mogi A, Yajima T, Kosaka T, Iijima M, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today. 2020;50:1099–106.PubMedCrossRef
56.
go back to reference Uhr K, Prager-Van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, Boersma AWM, et al. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS ONE. 2019;14:1–18.CrossRef Uhr K, Prager-Van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, Boersma AWM, et al. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS ONE. 2019;14:1–18.CrossRef
57.
go back to reference Xing C, Sun SG, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother. 2021;134:111158.PubMedCrossRef Xing C, Sun SG, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother. 2021;134:111158.PubMedCrossRef
58.
go back to reference Shen Q, Xu Z, Xu S. Long non-coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR-514a-3p/ULK1 axis in human non-small cell lung cancer. Int J Oncol. 2020;57:967–79.PubMedPubMedCentral Shen Q, Xu Z, Xu S. Long non-coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR-514a-3p/ULK1 axis in human non-small cell lung cancer. Int J Oncol. 2020;57:967–79.PubMedPubMedCentral
59.
go back to reference Wu R, Li L, Bai Y, Yu B, Xie C, Wu H, et al. The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing nucleolin to regulate MYC expression. Cell Death Dis. 2020;11:1–13.CrossRef Wu R, Li L, Bai Y, Yu B, Xie C, Wu H, et al. The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing nucleolin to regulate MYC expression. Cell Death Dis. 2020;11:1–13.CrossRef
60.
go back to reference Nweke EE, Brand M. Downregulation of the let-7 family of microRNAs may promote insulin receptor/insulin-like growth factor signalling pathways in pancreatic ductal adenocarcinoma. Oncol Lett. 2020;20:2613–20.PubMedPubMedCentralCrossRef Nweke EE, Brand M. Downregulation of the let-7 family of microRNAs may promote insulin receptor/insulin-like growth factor signalling pathways in pancreatic ductal adenocarcinoma. Oncol Lett. 2020;20:2613–20.PubMedPubMedCentralCrossRef
61.
go back to reference Ganesan S, Palani HK, Lakshmanan V, Balasundaram N, Alex AA, David S, et al. Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis. 2019;10(10):1–14.CrossRef Ganesan S, Palani HK, Lakshmanan V, Balasundaram N, Alex AA, David S, et al. Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis. 2019;10(10):1–14.CrossRef
62.
go back to reference Shi ZM, Wang L, Shen H, Jiang CF, Ge X, Li DM, et al. Downregulation of miR-218 contributes to epithelial–mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017;36:2577–88.PubMedPubMedCentralCrossRef Shi ZM, Wang L, Shen H, Jiang CF, Ge X, Li DM, et al. Downregulation of miR-218 contributes to epithelial–mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017;36:2577–88.PubMedPubMedCentralCrossRef
63.
go back to reference Yan S, Wang H, Chen X, Liang C, Shang W, Wang L, et al. MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett. 2020;488:18–26.PubMedCrossRef Yan S, Wang H, Chen X, Liang C, Shang W, Wang L, et al. MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett. 2020;488:18–26.PubMedCrossRef
65.
66.
go back to reference Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The network of non-coding RNAs in cancer drug resistance. Front Oncol. 2018;8:1–25.CrossRef Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The network of non-coding RNAs in cancer drug resistance. Front Oncol. 2018;8:1–25.CrossRef
Metadata
Title
A genome-wide expression profile of noncoding RNAs in human osteosarcoma cells as they acquire resistance to cisplatin
Authors
Harshita Sharma
Divya Niveditha
Rajdeep Chowdhury
Sudeshna Mukherjee
Shibasish Chowdhury
Publication date
01-12-2021
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2021
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-021-00441-6

Other articles of this Issue 1/2021

Discover Oncology 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine