Skip to main content
Top
Published in: Skeletal Radiology 2/2022

01-02-2022 | osteosarcoma | Review Article

Artificial intelligence applied to musculoskeletal oncology: a systematic review

Authors: Matthew D. Li, Syed Rakin Ahmed, Edwin Choy, Santiago A. Lozano-Calderon, Jayashree Kalpathy-Cramer, Connie Y. Chang

Published in: Skeletal Radiology | Issue 2/2022

Login to get access

Abstract

Developments in artificial intelligence have the potential to improve the care of patients with musculoskeletal tumors. We performed a systematic review of the published scientific literature to identify the current state of the art of artificial intelligence applied to musculoskeletal oncology, including both primary and metastatic tumors, and across the radiology, nuclear medicine, pathology, clinical research, and molecular biology literature. Through this search, we identified 252 primary research articles, of which 58 used deep learning and 194 used other machine learning techniques. Articles involving deep learning have mostly involved bone scintigraphy, histopathology, and radiologic imaging. Articles involving other machine learning techniques have mostly involved transcriptomic analyses, radiomics, and clinical outcome prediction models using medical records. These articles predominantly present proof-of-concept work, other than the automated bone scan index for bone metastasis quantification, which has translated to clinical workflows in some regions. We systematically review and discuss this literature, highlight opportunities for multidisciplinary collaboration, and identify potentially clinically useful topics with a relative paucity of research attention. Musculoskeletal oncology is an inherently multidisciplinary field, and future research will need to integrate and synthesize noisy siloed data from across clinical, imaging, and molecular datasets. Building the data infrastructure for collaboration will help to accelerate progress towards making artificial intelligence truly useful in musculoskeletal oncology.
Literature
3.
go back to reference Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions [Internet]. Am. J. Roentgenol. American Roentgen Ray Society; 2019 [cited 2021 Mar 8]. p. 506–13. Available from: https://pubmed.ncbi.nlm.nih.gov/31166761/. Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions [Internet]. Am. J. Roentgenol. American Roentgen Ray Society; 2019 [cited 2021 Mar 8]. p. 506–13. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31166761/​.
4.
6.
go back to reference Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol [Internet]. Nature Publishing Group; 2019 [cited 2021 Mar 8];16:703–15. Available from: https://pubmed.ncbi.nlm.nih.gov/31399699/. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol [Internet]. Nature Publishing Group; 2019 [cited 2021 Mar 8];16:703–15. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31399699/​.
9.
11.
go back to reference Lodwick GS, Haun CL, Smith WE, Keller RF, Robertson ED. Computer diagnosis of primary bone tumors. Radiology [Internet]. Radiological Society of North America (RSNA); 1963 [cited 2021 Mar 10];80:273–5. Available from: https://pubs.rsna.org/doi/abs/https://doi.org/10.1148/80.2.273. Lodwick GS, Haun CL, Smith WE, Keller RF, Robertson ED. Computer diagnosis of primary bone tumors. Radiology [Internet]. Radiological Society of North America (RSNA); 1963 [cited 2021 Mar 10];80:273–5. Available from: https://​pubs.​rsna.​org/​doi/​abs/​https://​doi.​org/​10.​1148/​80.​2.​273.
16.
go back to reference Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. Mosby Inc.; 2019 [cited 2021 Mar 10];128:424–30. Available from: https://pubmed.ncbi.nlm.nih.gov/31320299/. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. Mosby Inc.; 2019 [cited 2021 Mar 10];128:424–30. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31320299/​.
17.
go back to reference Santin M, Brama C, Théro H, Ketheeswaran E, El-Karoui I, Bidault F, et al. Detecting abnormal thyroid cartilages on CT using deep learning. Diagn Interv Imaging [Internet]. Elsevier Masson SAS; 2019 [cited 2021 Mar 10];100:251–7. Available from: https://pubmed.ncbi.nlm.nih.gov/30819638/. Santin M, Brama C, Théro H, Ketheeswaran E, El-Karoui I, Bidault F, et al. Detecting abnormal thyroid cartilages on CT using deep learning. Diagn Interv Imaging [Internet]. Elsevier Masson SAS; 2019 [cited 2021 Mar 10];100:251–7. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30819638/​.
18.
go back to reference Wang B, Perronne L, Burke C, Adler RS. Artificial intelligence for classification of soft-tissue masses at US. Radiol Artif Intell [Internet]. Radiological Society of North America (RSNA); 2021 [cited 2021 Mar 10];3:e200125. Available from: https://pubs.rsna.org/doi/abs/https://doi.org/10.1148/ryai.2020200125. Wang B, Perronne L, Burke C, Adler RS. Artificial intelligence for classification of soft-tissue masses at US. Radiol Artif Intell [Internet]. Radiological Society of North America (RSNA); 2021 [cited 2021 Mar 10];3:e200125. Available from: https://​pubs.​rsna.​org/​doi/​abs/​https://​doi.​org/​10.​1148/​ryai.​2020200125.
19.
go back to reference He Y, Guo J, Ding X, van Ooijen PMA, Zhang Y, Chen A, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images. Eur Radiol [Internet]. Springer Verlag; 2019 [cited 2021 Mar 10];29:5441–51. Available from: https://pubmed.ncbi.nlm.nih.gov/30859281/. He Y, Guo J, Ding X, van Ooijen PMA, Zhang Y, Chen A, et al. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images. Eur Radiol [Internet]. Springer Verlag; 2019 [cited 2021 Mar 10];29:5441–51. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30859281/​.
20.
go back to reference Lang N, Zhang Y, Zhang E, Zhang J, Chow D, Chang P, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn Reson Imaging [Internet]. Elsevier Inc.; 2019 [cited 2021 Mar 10];64:4–12. Available from: https://pubmed.ncbi.nlm.nih.gov/30826448/. Lang N, Zhang Y, Zhang E, Zhang J, Chow D, Chang P, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn Reson Imaging [Internet]. Elsevier Inc.; 2019 [cited 2021 Mar 10];64:4–12. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30826448/​.
22.
go back to reference Huang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Programs Biomed [Internet]. Elsevier Ireland Ltd; 2017 [cited 2021 Mar 10];143:67–74. Available from: https://pubmed.ncbi.nlm.nih.gov/28391820/. Huang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Programs Biomed [Internet]. Elsevier Ireland Ltd; 2017 [cited 2021 Mar 10];143:67–74. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​28391820/​.
24.
go back to reference Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, et al. Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2019 [cited 2021 Mar 10];113:89–95. Available from: https://pubmed.ncbi.nlm.nih.gov/30927965/. Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, et al. Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2019 [cited 2021 Mar 10];113:89–95. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30927965/​.
25.
go back to reference Zaman A, Park SH, Bang H, Park C woo, Park I, Joung S. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images. Int J Comput Assist Radiol Surg [Internet]. Springer; 2020 [cited 2021 Mar 10];15:931–41. Available from: https://pubmed.ncbi.nlm.nih.gov/32399586/. Zaman A, Park SH, Bang H, Park C woo, Park I, Joung S. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images. Int J Comput Assist Radiol Surg [Internet]. Springer; 2020 [cited 2021 Mar 10];15:931–41. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32399586/​.
26.
go back to reference Leporq B, Bouhamama A, Pilleul F, Lame F, Bihane C, Sdika M, et al. MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging [Internet]. BioMed Central Ltd; 2020 [cited 2021 Mar 10];20. Available from: https://pubmed.ncbi.nlm.nih.gov/33115533/. Leporq B, Bouhamama A, Pilleul F, Lame F, Bihane C, Sdika M, et al. MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging [Internet]. BioMed Central Ltd; 2020 [cited 2021 Mar 10];20. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​33115533/​.
27.
go back to reference Yin P, Mao N, Zhao C, Wu J, Sun C, Chen L, et al. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur Radiol [Internet]. Springer Verlag; 2019 [cited 2021 Mar 10];29:1841–7. Available from: https://pubmed.ncbi.nlm.nih.gov/30280245/. Yin P, Mao N, Zhao C, Wu J, Sun C, Chen L, et al. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur Radiol [Internet]. Springer Verlag; 2019 [cited 2021 Mar 10];29:1841–7. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30280245/​.
28.
go back to reference Wang H, Chen H, Duan S, Hao D, Liu J. Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas. J Magn Reson Imaging [Internet]. John Wiley and Sons Inc.; 2020 [cited 2021 Mar 10];51:791–7. Available from: https://pubmed.ncbi.nlm.nih.gov/31486565/. Wang H, Chen H, Duan S, Hao D, Liu J. Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas. J Magn Reson Imaging [Internet]. John Wiley and Sons Inc.; 2020 [cited 2021 Mar 10];51:791–7. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31486565/​.
29.
go back to reference Timbergen MJM, Starmans MPA, Padmos GA, Grünhagen DJ, van Leenders GJLH, Hanff DF, et al. Differential diagnosis and mutation stratification of desmoid-type fibromatosis on MRI using radiomics. Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2020 [cited 2021 Mar 10];131. Available from: https://pubmed.ncbi.nlm.nih.gov/32971431/. Timbergen MJM, Starmans MPA, Padmos GA, Grünhagen DJ, van Leenders GJLH, Hanff DF, et al. Differential diagnosis and mutation stratification of desmoid-type fibromatosis on MRI using radiomics. Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2020 [cited 2021 Mar 10];131. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32971431/​.
30.
go back to reference Oh E, Seo SW, Yoon YC, Kim DW, Kwon S, Yoon S. Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: comparison of computed tomography-based radiological features with clinical features versus without clinical features. J Orthop Surg [Internet]. SAGE Publications Ltd; 2017 [cited 2021 Mar 10];25. Available from: https://pubmed.ncbi.nlm.nih.gov/28659051/. Oh E, Seo SW, Yoon YC, Kim DW, Kwon S, Yoon S. Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: comparison of computed tomography-based radiological features with clinical features versus without clinical features. J Orthop Surg [Internet]. SAGE Publications Ltd; 2017 [cited 2021 Mar 10];25. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​28659051/​.
31.
go back to reference Gao Y, Kalbasi A, Hsu W, Ruan D, Fu J, Shao J, et al. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Phys Med Biol [Internet]. IOP Publishing Ltd; 2020 [cited 2021 Mar 10];65. Available from: https://pubmed.ncbi.nlm.nih.gov/32554891/. Gao Y, Kalbasi A, Hsu W, Ruan D, Fu J, Shao J, et al. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Phys Med Biol [Internet]. IOP Publishing Ltd; 2020 [cited 2021 Mar 10];65. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32554891/​.
33.
go back to reference Crombé A, Fadli D, Italiano A, Saut O, Buy X, Kind M. Systematic review of sarcomas radiomics studies: bridging the gap between concepts and clinical applications? Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2020 [cited 2021 Mar 10];132. Available from: https://pubmed.ncbi.nlm.nih.gov/32980727/. Crombé A, Fadli D, Italiano A, Saut O, Buy X, Kind M. Systematic review of sarcomas radiomics studies: bridging the gap between concepts and clinical applications? Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2020 [cited 2021 Mar 10];132. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32980727/​.
34.
go back to reference Chen CY, Chiou HJ, Chou SY, Chiou SY, Wang HK, Chou YH, et al. Computer-aided diagnosis of soft-tissue tumors using sonographic morphologic and texture features. Acad Radiol [Internet]. Acad Radiol; 2009 [cited 2021 Mar 10];16:1531–8. Available from: https://pubmed.ncbi.nlm.nih.gov/19896070/. Chen CY, Chiou HJ, Chou SY, Chiou SY, Wang HK, Chou YH, et al. Computer-aided diagnosis of soft-tissue tumors using sonographic morphologic and texture features. Acad Radiol [Internet]. Acad Radiol; 2009 [cited 2021 Mar 10];16:1531–8. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​19896070/​.
35.
go back to reference Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging [Internet]. Springer New York LLC; 2018 [cited 2021 Mar 10];31:604–10. Available from: https://pubmed.ncbi.nlm.nih.gov/29619578/. Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging [Internet]. Springer New York LLC; 2018 [cited 2021 Mar 10];31:604–10. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29619578/​.
36.
go back to reference Groot OQ, Bongers MER, Karhade A V., Kapoor ND, Fenn BP, Kim J, et al. Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports. Acta Oncol (Madr) [Internet]. Taylor and Francis Ltd.; 2020 [cited 2021 Mar 10];59:1455–60. Available from: https://pubmed.ncbi.nlm.nih.gov/32924696/. Groot OQ, Bongers MER, Karhade A V., Kapoor ND, Fenn BP, Kim J, et al. Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports. Acta Oncol (Madr) [Internet]. Taylor and Francis Ltd.; 2020 [cited 2021 Mar 10];59:1455–60. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32924696/​.
37.
go back to reference Chen PH, Zafar H, Galperin-Aizenberg M, Cook T. Integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports. J Digit Imaging [Internet]. Springer New York LLC; 2018 [cited 2021 Mar 10];31:178–84. Available from: https://pubmed.ncbi.nlm.nih.gov/29079959/. Chen PH, Zafar H, Galperin-Aizenberg M, Cook T. Integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports. J Digit Imaging [Internet]. Springer New York LLC; 2018 [cited 2021 Mar 10];31:178–84. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29079959/​.
38.
go back to reference Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, et al. A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys [Internet]. John Wiley and Sons Ltd; 2021 [cited 2021 Mar 10];22:11–36. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/acm2.13121. Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, et al. A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys [Internet]. John Wiley and Sons Ltd; 2021 [cited 2021 Mar 10];22:11–36. Available from: https://​onlinelibrary.​wiley.​com/​doi/​https://​doi.​org/​10.​1002/​acm2.​13121.
39.
go back to reference Isaac A, Dalili D, Dalili D, Weber MA. State-of-the-art imaging for diagnosis of metastatic bone disease [Internet]. Radiologe. Springer Medizin; 2020 [cited 2021 Mar 9]. p. 1–16. Available from: https://doi.org/https://doi.org/10.1007/s00117-020-00666-6. Isaac A, Dalili D, Dalili D, Weber MA. State-of-the-art imaging for diagnosis of metastatic bone disease [Internet]. Radiologe. Springer Medizin; 2020 [cited 2021 Mar 9]. p. 1–16. Available from: https://​doi.​org/​https://​doi.​org/​10.​1007/​s00117-020-00666-6.
40.
go back to reference Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM. Quantitative bone metastases analysis based on image segmentation. J Nucl Med. 1997;38:1401–6.PubMed Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM. Quantitative bone metastases analysis based on image segmentation. J Nucl Med. 1997;38:1401–6.PubMed
41.
go back to reference Imbriaco M, Larson SM, Yeung HW, Mawlawi OR, Erdi Y, Venkatraman ES, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res. 1998;4(4):1765–72.PubMed Imbriaco M, Larson SM, Yeung HW, Mawlawi OR, Erdi Y, Venkatraman ES, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res. 1998;4(4):1765–72.PubMed
42.
go back to reference Sadik M, Hamadeh I, Nordblom P, Suurkula M, Höglund P, Ohlsson M, et al. Computer-assisted interpretation of planar whole-body bone scans. J Nucl Med [Internet]. Society of Nuclear Medicine; 2008 [cited 2021 Mar 9];49:1958–65. Available from: http://www.exini.com. Sadik M, Hamadeh I, Nordblom P, Suurkula M, Höglund P, Ohlsson M, et al. Computer-assisted interpretation of planar whole-body bone scans. J Nucl Med [Internet]. Society of Nuclear Medicine; 2008 [cited 2021 Mar 9];49:1958–65. Available from: http://​www.​exini.​com.
43.
go back to reference Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the bone scan index. Eur Urol [Internet]. Eur Urol; 2012 [cited 2021 Mar 9];62:78–84. Available from: https://pubmed.ncbi.nlm.nih.gov/22306323/. Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the bone scan index. Eur Urol [Internet]. Eur Urol; 2012 [cited 2021 Mar 9];62:78–84. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​22306323/​.
45.
go back to reference Armstrong AJ, Anand A, Edenbrandt L, Bondesson E, Bjartell A, Widmark A, et al. Phase 3 assessment of the automated bone scan index as a prognostic imaging biomarker of overall survival in men with metastatic castration-resistant prostate cancer a secondary analysis of a randomized clinical trial. JAMA Oncol [Internet]. American Medical Association; 2018 [cited 2021 Mar 9];4:944–51. Available from: https://jamanetwork.com/. Armstrong AJ, Anand A, Edenbrandt L, Bondesson E, Bjartell A, Widmark A, et al. Phase 3 assessment of the automated bone scan index as a prognostic imaging biomarker of overall survival in men with metastatic castration-resistant prostate cancer a secondary analysis of a randomized clinical trial. JAMA Oncol [Internet]. American Medical Association; 2018 [cited 2021 Mar 9];4:944–51. Available from: https://​jamanetwork.​com/​.
46.
go back to reference Inaki A, Nakajima K, Wakabayashi H, Mochizuki T, Kinuya S. Fully automated analysis for bone scintigraphy with artificial neural network: usefulness of bone scan index (BSI) in breast cancer. Ann Nucl Med [Internet]. Springer Tokyo; 2019 [cited 2021 Mar 9];33:755–65. Available from: https://pubmed.ncbi.nlm.nih.gov/31317398/. Inaki A, Nakajima K, Wakabayashi H, Mochizuki T, Kinuya S. Fully automated analysis for bone scintigraphy with artificial neural network: usefulness of bone scan index (BSI) in breast cancer. Ann Nucl Med [Internet]. Springer Tokyo; 2019 [cited 2021 Mar 9];33:755–65. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31317398/​.
47.
go back to reference Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep [Internet]. Nature Research; 2020 [cited 2021 Mar 9];10. Available from: https://pubmed.ncbi.nlm.nih.gov/33046779/. Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep [Internet]. Nature Research; 2020 [cited 2021 Mar 9];10. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​33046779/​.
48.
go back to reference Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, et al. Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg [Internet]. Springer; 2020 [cited 2021 Mar 9];15:389–400. Available from: /pmc/articles/PMC7036077/. Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, et al. Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg [Internet]. Springer; 2020 [cited 2021 Mar 9];15:389–400. Available from: /pmc/articles/PMC7036077/.
49.
go back to reference Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLoS One [Internet]. Public Library of Science; 2020 [cited 2021 Mar 9];15. Available from: https://pubmed.ncbi.nlm.nih.gov/32797099/. Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLoS One [Internet]. Public Library of Science; 2020 [cited 2021 Mar 9];15. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32797099/​.
50.
go back to reference Minarik D, Enqvist O, Trägårdh E. Denoising of scintillation camera images using a deep convolutional neural network: a Monte Carlo simulation approach. J Nucl Med [Internet]. Society of Nuclear Medicine Inc.; 2020 [cited 2021 Mar 9];61:298–303. Available from: https://pubmed.ncbi.nlm.nih.gov/31324711/. Minarik D, Enqvist O, Trägårdh E. Denoising of scintillation camera images using a deep convolutional neural network: a Monte Carlo simulation approach. J Nucl Med [Internet]. Society of Nuclear Medicine Inc.; 2020 [cited 2021 Mar 9];61:298–303. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31324711/​.
51.
go back to reference Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated whole-body bone lesion detection for multiple myeloma on 68 Ga-Pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol Imaging [Internet]. Hindawi Limited; 2018 [cited 2021 Mar 9];2018. Available from: https://pubmed.ncbi.nlm.nih.gov/29531504/. Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated whole-body bone lesion detection for multiple myeloma on 68 Ga-Pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol Imaging [Internet]. Hindawi Limited; 2018 [cited 2021 Mar 9];2018. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29531504/​.
52.
go back to reference Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging [Internet]. Springer; 2020 [cited 2021 Mar 9];47:603–13. Available from: https://pubmed.ncbi.nlm.nih.gov/31813050/. Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging [Internet]. Springer; 2020 [cited 2021 Mar 9];47:603–13. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31813050/​.
53.
go back to reference Moreau N, Rousseau C, Fourcade C, Santini G, Ferrer L, Lacombe M, et al. Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS [Internet]. Institute of Electrical and Electronics Engineers Inc.; 2020 [cited 2021 Mar 9]. p. 1532–5. Available from: https://pubmed.ncbi.nlm.nih.gov/33018283/. Moreau N, Rousseau C, Fourcade C, Santini G, Ferrer L, Lacombe M, et al. Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS [Internet]. Institute of Electrical and Electronics Engineers Inc.; 2020 [cited 2021 Mar 9]. p. 1532–5. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​33018283/​.
58.
go back to reference Arunachalam HB, Mishra R, Daescu O, Cederberg K, Rakheja D, Sengupta A, et al. Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models. PLoS One [Internet]. Public Library of Science; 2019 [cited 2021 Mar 10];14. Available from: https://pubmed.ncbi.nlm.nih.gov/30995247/. Arunachalam HB, Mishra R, Daescu O, Cederberg K, Rakheja D, Sengupta A, et al. Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models. PLoS One [Internet]. Public Library of Science; 2019 [cited 2021 Mar 10];14. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30995247/​.
61.
go back to reference Doan M, Case M, Masic D, Hennig H, McQuin C, Caicedo J, et al. Label-free leukemia monitoring by computer vision. Cytom Part A [Internet]. Wiley-Liss Inc.; 2020 [cited 2021 Mar 10];97:407–14. Available from: /pmc/articles/PMC7213640/. Doan M, Case M, Masic D, Hennig H, McQuin C, Caicedo J, et al. Label-free leukemia monitoring by computer vision. Cytom Part A [Internet]. Wiley-Liss Inc.; 2020 [cited 2021 Mar 10];97:407–14. Available from: /pmc/articles/PMC7213640/.
62.
64.
go back to reference Overmann AL, Clark DRM, Tsagkozis P, Wedin R, Forsberg JA. Validation of PATHFx 2.0: an open-source tool for estimating survival in patients undergoing pathologic fracture fixation. J Orthop Res [Internet]. John Wiley and Sons Inc; 2020 [cited 2021 Mar 10];38:2149–56. Available from: https://pubmed.ncbi.nlm.nih.gov/32492213/. Overmann AL, Clark DRM, Tsagkozis P, Wedin R, Forsberg JA. Validation of PATHFx 2.0: an open-source tool for estimating survival in patients undergoing pathologic fracture fixation. J Orthop Res [Internet]. John Wiley and Sons Inc; 2020 [cited 2021 Mar 10];38:2149–56. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32492213/​.
65.
go back to reference Anderson AB, Wedin R, Fabbri N, Boland P, Healey J, Forsberg JA. External validation of PATHFx version 3.0 in patients treated surgically and nonsurgically for symptomatic skeletal metastases. Clin Orthop Relat Res [Internet]. Lippincott Williams and Wilkins; 2020 [cited 2021 Mar 11];478:808–18. Available from: https://pubmed.ncbi.nlm.nih.gov/32195761/. Anderson AB, Wedin R, Fabbri N, Boland P, Healey J, Forsberg JA. External validation of PATHFx version 3.0 in patients treated surgically and nonsurgically for symptomatic skeletal metastases. Clin Orthop Relat Res [Internet]. Lippincott Williams and Wilkins; 2020 [cited 2021 Mar 11];478:808–18. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32195761/​.
67.
go back to reference Huang R, Xian S, Shi T, Yan P, Hu P, Yin H, et al. Evaluating and predicting the probability of death in patients with non-metastatic osteosarcoma: a population-based study. Med Sci Monit [Internet]. International Scientific Information, Inc.; 2019 [cited 2021 Mar 10];25:4675–90. Available from: https://pubmed.ncbi.nlm.nih.gov/31231119/. Huang R, Xian S, Shi T, Yan P, Hu P, Yin H, et al. Evaluating and predicting the probability of death in patients with non-metastatic osteosarcoma: a population-based study. Med Sci Monit [Internet]. International Scientific Information, Inc.; 2019 [cited 2021 Mar 10];25:4675–90. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31231119/​.
68.
go back to reference Yan P, Huang R, Hu P, Liu F, Zhu X, Hu P, et al. Nomograms for predicting the overall and cause-specific survival in patients with malignant peripheral nerve sheath tumor: a population-based study. J Neurooncol [Internet]. Springer New York LLC; 2019 [cited 2021 Mar 10];143:495–503. Available from: https://pubmed.ncbi.nlm.nih.gov/31089923/. Yan P, Huang R, Hu P, Liu F, Zhu X, Hu P, et al. Nomograms for predicting the overall and cause-specific survival in patients with malignant peripheral nerve sheath tumor: a population-based study. J Neurooncol [Internet]. Springer New York LLC; 2019 [cited 2021 Mar 10];143:495–503. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31089923/​.
69.
go back to reference Thio QCBS, Karhade A V., Ogink PT, Raskin KA, De Amorim Bernstein K, Lozano Calderon SA, et al. Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma? Clin Orthop Relat Res [Internet]. Lippincott Williams and Wilkins; 2018 [cited 2021 Mar 10];476:2040–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30179954/. Thio QCBS, Karhade A V., Ogink PT, Raskin KA, De Amorim Bernstein K, Lozano Calderon SA, et al. Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma? Clin Orthop Relat Res [Internet]. Lippincott Williams and Wilkins; 2018 [cited 2021 Mar 10];476:2040–8. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30179954/​.
70.
go back to reference Bongers MER, Thio QCBS, Karhade A V., Stor ML, Raskin KA, Lozano Calderon SA, et al. Does the SORG algorithm predict 5-year survival in patients with chondrosarcoma? An external validation. Clin Orthop Relat Res [Internet]. Lippincott Williams and Wilkins; 2019 [cited 2021 Mar 11];477:2296–303. Available from: https://pubmed.ncbi.nlm.nih.gov/31107338/. Bongers MER, Thio QCBS, Karhade A V., Stor ML, Raskin KA, Lozano Calderon SA, et al. Does the SORG algorithm predict 5-year survival in patients with chondrosarcoma? An external validation. Clin Orthop Relat Res [Internet]. Lippincott Williams and Wilkins; 2019 [cited 2021 Mar 11];477:2296–303. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31107338/​.
71.
go back to reference Bongers MER, Karhade A V., Setola E, Gambarotti M, Groot OQ, Erdoğan KE, et al. How does the skeletal oncology research group algorithm’s prediction of 5-year survival in patients with chondrosarcoma perform on international validation? Clin Orthop Relat Res [Internet]. NLM (Medline); 2020 [cited 2021 Mar 11];478:2300–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32433107/. Bongers MER, Karhade A V., Setola E, Gambarotti M, Groot OQ, Erdoğan KE, et al. How does the skeletal oncology research group algorithm’s prediction of 5-year survival in patients with chondrosarcoma perform on international validation? Clin Orthop Relat Res [Internet]. NLM (Medline); 2020 [cited 2021 Mar 11];478:2300–8. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32433107/​.
72.
go back to reference Kamalapathy PN, Ramkumar DB, Karhade A V, Kelly S, Raskin K, Schwab J, et al. Development of machine learning model algorithm for prediction of 5-year soft tissue myxoid liposarcoma survival. J Surg Oncol [Internet]. n/a. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/jso.26398. Kamalapathy PN, Ramkumar DB, Karhade A V, Kelly S, Raskin K, Schwab J, et al. Development of machine learning model algorithm for prediction of 5-year soft tissue myxoid liposarcoma survival. J Surg Oncol [Internet]. n/a. Available from: https://​onlinelibrary.​wiley.​com/​doi/​abs/​https://​doi.​org/​10.​1002/​jso.​26398.
73.
go back to reference Seo SW, Kim J, Son J, Lim S. Evaluation of conditional treatment effects of adjuvant treatments on patients with synovial sarcoma using Bayesian subgroup analysis. BMC Med Inform Decis Mak [Internet]. BioMed Central Ltd; 2020 [cited 2021 Mar 11];20. Available from: https://pubmed.ncbi.nlm.nih.gov/33272256/. Seo SW, Kim J, Son J, Lim S. Evaluation of conditional treatment effects of adjuvant treatments on patients with synovial sarcoma using Bayesian subgroup analysis. BMC Med Inform Decis Mak [Internet]. BioMed Central Ltd; 2020 [cited 2021 Mar 11];20. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​33272256/​.
75.
go back to reference Huang Z, Hu C, Chi C, Jiang Z, Tong Y, Zhao C. An artificial intelligence model for predicting 1-year survival of bone metastases in non-small-cell lung cancer patients based on XGBoost algorithm. Biomed Res Int [Internet]. Hindawi Limited; 2020 [cited 2021 Mar 11];2020. Available from: https://pubmed.ncbi.nlm.nih.gov/32685470/. Huang Z, Hu C, Chi C, Jiang Z, Tong Y, Zhao C. An artificial intelligence model for predicting 1-year survival of bone metastases in non-small-cell lung cancer patients based on XGBoost algorithm. Biomed Res Int [Internet]. Hindawi Limited; 2020 [cited 2021 Mar 11];2020. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32685470/​.
76.
go back to reference Thio QCBS, Karhade A V., Bindels BJJ, Ogink PT, Bramer JAM, Ferrone ML, et al. Development and internal validation of machine learning algorithms for preoperative survival prediction of extremity metastatic disease. Clin Orthop Relat Res [Internet]. NLM (Medline); 2020 [cited 2021 Mar 10];478:322–33. Available from: https://pubmed.ncbi.nlm.nih.gov/31651589/. Thio QCBS, Karhade A V., Bindels BJJ, Ogink PT, Bramer JAM, Ferrone ML, et al. Development and internal validation of machine learning algorithms for preoperative survival prediction of extremity metastatic disease. Clin Orthop Relat Res [Internet]. NLM (Medline); 2020 [cited 2021 Mar 10];478:322–33. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31651589/​.
77.
go back to reference Peeken JC, Goldberg T, Knie C, Komboz B, Bernhofer M, Pasa F, et al. Treatment-related features improve machine learning prediction of prognosis in soft tissue sarcoma patients. Strahlentherapie und Onkol [Internet]. Urban und Vogel GmbH; 2018 [cited 2021 Mar 10];194:824–34. Available from: https://pubmed.ncbi.nlm.nih.gov/29557486/. Peeken JC, Goldberg T, Knie C, Komboz B, Bernhofer M, Pasa F, et al. Treatment-related features improve machine learning prediction of prognosis in soft tissue sarcoma patients. Strahlentherapie und Onkol [Internet]. Urban und Vogel GmbH; 2018 [cited 2021 Mar 10];194:824–34. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29557486/​.
78.
go back to reference Wang Z, Wen X, Lu Y, Yao Y, Zhao H. Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget [Internet]. Impact Journals LLC; 2016 [cited 2021 Mar 10];7:12612–22. Available from: /pmc/articles/PMC4914308/. Wang Z, Wen X, Lu Y, Yao Y, Zhao H. Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget [Internet]. Impact Journals LLC; 2016 [cited 2021 Mar 10];7:12612–22. Available from: /pmc/articles/PMC4914308/.
79.
go back to reference Pereira NRP, Janssen SJ, Van Dijk E, Harris MB, Hornicek FJ, Ferrone ML, et al. Development of a prognostic survival algorithm for patients with metastatic spine disease. J Bone Jt Surg - Am Vol [Internet]. Lippincott Williams and Wilkins; 2016 [cited 2021 Mar 11];98:1767–76. Available from: https://pubmed.ncbi.nlm.nih.gov/27807108/. Pereira NRP, Janssen SJ, Van Dijk E, Harris MB, Hornicek FJ, Ferrone ML, et al. Development of a prognostic survival algorithm for patients with metastatic spine disease. J Bone Jt Surg - Am Vol [Internet]. Lippincott Williams and Wilkins; 2016 [cited 2021 Mar 11];98:1767–76. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​27807108/​.
80.
go back to reference Alcorn SR, Fiksel J, Wright JL, Elledge CR, Smith TJ, Perng P, et al. Developing an improved statistical approach for survival estimation in bone metastases management: the bone metastases ensemble trees for survival (BMETS) model. Int J Radiat Oncol Biol Phys [Internet]. Elsevier Inc.; 2020 [cited 2021 Mar 11];108:554–63. Available from: https://pubmed.ncbi.nlm.nih.gov/32446952/. Alcorn SR, Fiksel J, Wright JL, Elledge CR, Smith TJ, Perng P, et al. Developing an improved statistical approach for survival estimation in bone metastases management: the bone metastases ensemble trees for survival (BMETS) model. Int J Radiat Oncol Biol Phys [Internet]. Elsevier Inc.; 2020 [cited 2021 Mar 11];108:554–63. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32446952/​.
81.
go back to reference Goldbraich E, Waks Z, Farkash A, Monti M, Torresani M, Bertulli R, et al. Understanding deviations from clinical practice guidelines in adult soft tissue sarcoma. Stud Health Technol Inform. 2015;216:280–4 (IOS Press).PubMed Goldbraich E, Waks Z, Farkash A, Monti M, Torresani M, Bertulli R, et al. Understanding deviations from clinical practice guidelines in adult soft tissue sarcoma. Stud Health Technol Inform. 2015;216:280–4 (IOS Press).PubMed
82.
go back to reference Coquet J, Bozkurt S, Kan KM, Ferrari MK, Blayney DW, Brooks JD, et al. Comparison of orthogonal NLP methods for clinical phenotyping and assessment of bone scan utilization among prostate cancer patients. J Biomed Inform [Internet]. Academic Press Inc.; 2019 [cited 2021 Mar 11];94. Available from: https://pubmed.ncbi.nlm.nih.gov/31014980/. Coquet J, Bozkurt S, Kan KM, Ferrari MK, Blayney DW, Brooks JD, et al. Comparison of orthogonal NLP methods for clinical phenotyping and assessment of bone scan utilization among prostate cancer patients. J Biomed Inform [Internet]. Academic Press Inc.; 2019 [cited 2021 Mar 11];94. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31014980/​.
84.
go back to reference Xuan P, Jia L, Zhang T, Sheng N, Li X, Li J. LDAPred: a method based on information flow propagation and a convolutional neural network for the prediction of disease-associated lncRNAs. Int J Mol Sci [Internet]. MDPI AG; 2019 [cited 2021 Mar 11];20. Available from: https://pubmed.ncbi.nlm.nih.gov/31510011/. Xuan P, Jia L, Zhang T, Sheng N, Li X, Li J. LDAPred: a method based on information flow propagation and a convolutional neural network for the prediction of disease-associated lncRNAs. Int J Mol Sci [Internet]. MDPI AG; 2019 [cited 2021 Mar 11];20. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31510011/​.
86.
go back to reference Chiechi A, Novello C, Magagnoli G, Petricoin EF, Deng J, Benassi MS, et al. Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res [Internet]. Clin Cancer Res; 2013 [cited 2021 Mar 12];19:2473–85. Available from: https://pubmed.ncbi.nlm.nih.gov/23493346/. Chiechi A, Novello C, Magagnoli G, Petricoin EF, Deng J, Benassi MS, et al. Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res [Internet]. Clin Cancer Res; 2013 [cited 2021 Mar 12];19:2473–85. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​23493346/​.
87.
go back to reference Hill KE, Kelly AD, Kuijjer ML, Barry W, Rattani A, Garbutt CC, et al. An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets. J Hematol Oncol [Internet]. BioMed Central Ltd.; 2017 [cited 2021 Mar 12];10. Available from: https://pubmed.ncbi.nlm.nih.gov/28506242/. Hill KE, Kelly AD, Kuijjer ML, Barry W, Rattani A, Garbutt CC, et al. An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets. J Hematol Oncol [Internet]. BioMed Central Ltd.; 2017 [cited 2021 Mar 12];10. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​28506242/​.
88.
go back to reference Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther [Internet]. Cell Press; 2019 [cited 2021 Mar 12];27:518–30. Available from: https://pubmed.ncbi.nlm.nih.gov/30692017/. Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther [Internet]. Cell Press; 2019 [cited 2021 Mar 12];27:518–30. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30692017/​.
89.
go back to reference Ren E hui, Deng Y jun, Yuan W hua, Wu Z long, Zhang G zhi, Xie Q qi. An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning. J Cancer Res Clin Oncol [Internet]. Springer Science and Business Media Deutschland GmbH; 2021 [cited 2021 Mar 12];147:153–65. Available from: https://pubmed.ncbi.nlm.nih.gov/32968877/. Ren E hui, Deng Y jun, Yuan W hua, Wu Z long, Zhang G zhi, Xie Q qi. An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning. J Cancer Res Clin Oncol [Internet]. Springer Science and Business Media Deutschland GmbH; 2021 [cited 2021 Mar 12];147:153–65. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​32968877/​.
90.
91.
go back to reference van IJzendoorn DGP, Szuhai K, Briaire-De Bruijn IH, Kostine M, Kuijjer ML, Bovée JVMG. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput Biol [Internet]. Public Library of Science; 2019 [cited 2021 Mar 12];15. Available from: https://pubmed.ncbi.nlm.nih.gov/30785874/. van IJzendoorn DGP, Szuhai K, Briaire-De Bruijn IH, Kostine M, Kuijjer ML, Bovée JVMG. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput Biol [Internet]. Public Library of Science; 2019 [cited 2021 Mar 12];15. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30785874/​.
92.
go back to reference Cabrera-Andrade A, López-Cortés A, Jaramillo-Koupermann G, González-Díaz H, Pazos A, Munteanu CR, et al. A multi-objective approach for anti-osteosarcoma cancer agents discovery through drug repurposing. Pharmaceuticals [Internet]. MDPI AG; 2020 [cited 2021 Mar 12];13:1–16. Available from: https://pubmed.ncbi.nlm.nih.gov/33266378/. Cabrera-Andrade A, López-Cortés A, Jaramillo-Koupermann G, González-Díaz H, Pazos A, Munteanu CR, et al. A multi-objective approach for anti-osteosarcoma cancer agents discovery through drug repurposing. Pharmaceuticals [Internet]. MDPI AG; 2020 [cited 2021 Mar 12];13:1–16. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​33266378/​.
93.
go back to reference Shen R, Li Z, Zhang L, Hua Y, Mao M, Li Z, et al. Osteosarcoma patients classification using plain X-rays and metabolomic data. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS [Internet]. Institute of Electrical and Electronics Engineers Inc.; 2018 [cited 2021 Mar 12]. p. 690–3. Available from: https://pubmed.ncbi.nlm.nih.gov/30440490/. Shen R, Li Z, Zhang L, Hua Y, Mao M, Li Z, et al. Osteosarcoma patients classification using plain X-rays and metabolomic data. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS [Internet]. Institute of Electrical and Electronics Engineers Inc.; 2018 [cited 2021 Mar 12]. p. 690–3. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30440490/​.
94.
go back to reference Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines [Internet]. npj Digit. Med. Nature Research; 2020 [cited 2021 Jan 8]. p. 1–9. Available from: https://doi.org/https://doi.org/10.1038/s41746-020-00341-z. Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines [Internet]. npj Digit. Med. Nature Research; 2020 [cited 2021 Jan 8]. p. 1–9. Available from: https://​doi.​org/​https://​doi.​org/​10.​1038/​s41746-020-00341-z.
95.
go back to reference Richardson ML, Garwood ER, Lee Y, Li MD, Lo HS, Nagaraju A, et al. Noninterpretive uses of artificial intelligence in radiology. Acad Radiol. 2020;S1076–6332:30039–8. Richardson ML, Garwood ER, Lee Y, Li MD, Lo HS, Nagaraju A, et al. Noninterpretive uses of artificial intelligence in radiology. Acad Radiol. 2020;S1076–6332:30039–8.
96.
go back to reference Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. Transformers: state-of-the-art natural language processing. Proc 2020 Conf Empir Methods Nat Lang Process Syst Demonstr [Internet]. Stroudsburg, PA, USA: Association for Computational Linguistics; 2020 [cited 2021 Jan 4]. p. 38–45. Available from: https://www.aclweb.org/anthology/2020.emnlp-demos.6. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. Transformers: state-of-the-art natural language processing. Proc 2020 Conf Empir Methods Nat Lang Process Syst Demonstr [Internet]. Stroudsburg, PA, USA: Association for Computational Linguistics; 2020 [cited 2021 Jan 4]. p. 38–45. Available from: https://​www.​aclweb.​org/​anthology/​2020.​emnlp-demos.​6.
98.
go back to reference Yang J, Sohn JH, Behr SC, Gullberg GT, Seo Y. CT-less direct correction of attenuation and scatter in image space using deep learning for whole-body FDG PET: potential benefits and pitfalls. Radiol Artif Intell [Internet]. Radiological Society of North America (RSNA); 2020 [cited 2021 Mar 12];e200137. Available from: https://pubs.rsna.org/doi/abs/https://doi.org/10.1148/ryai.2020200137. Yang J, Sohn JH, Behr SC, Gullberg GT, Seo Y. CT-less direct correction of attenuation and scatter in image space using deep learning for whole-body FDG PET: potential benefits and pitfalls. Radiol Artif Intell [Internet]. Radiological Society of North America (RSNA); 2020 [cited 2021 Mar 12];e200137. Available from: https://​pubs.​rsna.​org/​doi/​abs/​https://​doi.​org/​10.​1148/​ryai.​2020200137.
99.
go back to reference Li MD, Chang K, Bearce B, Chang CY, Huang AJ, Campbell JP, et al. Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. npj Digit Med [Internet]. Springer Science and Business Media LLC; 2020 [cited 2020 Jun 20];3:1–9. Available from: https://www.nature.com/articles/s41746-020-0255-1. Li MD, Chang K, Bearce B, Chang CY, Huang AJ, Campbell JP, et al. Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. npj Digit Med [Internet]. Springer Science and Business Media LLC; 2020 [cited 2020 Jun 20];3:1–9. Available from: https://​www.​nature.​com/​articles/​s41746-020-0255-1.
100.
Metadata
Title
Artificial intelligence applied to musculoskeletal oncology: a systematic review
Authors
Matthew D. Li
Syed Rakin Ahmed
Edwin Choy
Santiago A. Lozano-Calderon
Jayashree Kalpathy-Cramer
Connie Y. Chang
Publication date
01-02-2022
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 2/2022
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-021-03820-w

Other articles of this Issue 2/2022

Skeletal Radiology 2/2022 Go to the issue