Skip to main content
Top
Published in: BMC Nephrology 1/2021

Open Access 01-12-2021 | Osteoporosis | Research

Fibroblast growth factor 21 (FGF21) is a sensitive marker of osteoporosis in haemodialysis patients: a cross-sectional observational study

Authors: Lili Zhu, Min Li, Qianqian Zha, Min Yang, Jirong Yu, Mingming Pan, Qing Yin, Liqiong Jiang, Meixia Xia, Bi-Cheng Liu, Bin Wang

Published in: BMC Nephrology | Issue 1/2021

Login to get access

Abstract

Introduction

Osteoporosis is one of the important bone abnormalities in chronic kidney disease-mineral and bone disorder (CKD-MBD) and still lacks a sensitive biomarker to diagnose. Fibroblast growth factor 21 (FGF21) can stimulate bone loss in patients with diabetes and increase in CKD patients. In this study, we investigated whether FGF21 could serve as a biomarker to predict osteoporosis in a haemodialysis cohort.

Methods

We recorded demographic information, biochemical data, and serum FGF21 and FGF23 levels and measured the CT attenuation values of 339 haemodialysis patients from two large medical centres. We assessed the correlation of CT attenuation values with serum FGF21 and FGF23 levels and tested whether they were independent factors for osteoporosis. ROC curves were constructed to compare the prognostic value of FGF21 and FGF23 for osteoporosis.

Results

Based on the CT attenuation value, serum FGF21 levels were higher in our osteoporosis group (median 640.86 pg/ml vs. 245.46 pg/ml, P ˂ 0.01). Meanwhile, FGF21 (r = -0.136, P < 0.05) and FGF23 (r = -0.151, P < 0.05) were both negatively associated with osteoporosis. Moreover, FGF21 (β = -0.067, P < 0.05) was an independent factor for osteoporosis. Furthermore, FGF21 combined with age yielded a marked specificity (90.5 %) and sensitivity (61.8 %) in predicting osteoporosis of haemodialysis patients with less residual renal function.

Conclusions

FGF21 has a positive relationship with the incidence of osteoporosis in patients on haemodialysis. FGF21 combined with age is a good predictive biomarker for osteoporosis in patients on haemodialysis, especially those with less residual renal function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND: Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney international, 92(1):26–36. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND: Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney international, 92(1):26–36.
2.
go back to reference Rivara MB, Ravel V, Kalantar-Zadeh K, Streja E, Lau WL, Nissenson AR, Kestenbaum B, de Boer IH, Himmelfarb J, Mehrotra R. Uncorrected and Albumin-Corrected Calcium, Phosphorus, and Mortality in Patients Undergoing Maintenance Dialysis. J Am Soc Nephrol. 2015;26(7):1671–81.CrossRef Rivara MB, Ravel V, Kalantar-Zadeh K, Streja E, Lau WL, Nissenson AR, Kestenbaum B, de Boer IH, Himmelfarb J, Mehrotra R. Uncorrected and Albumin-Corrected Calcium, Phosphorus, and Mortality in Patients Undergoing Maintenance Dialysis. J Am Soc Nephrol. 2015;26(7):1671–81.CrossRef
3.
go back to reference Graciolli FG, Neves KR, Barreto F, Barreto DV, Dos Reis LM, Canziani ME, Sabbagh Y, Carvalho AB, Jorgetti V, Elias RM et al: The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney international 2017, 91(6):1436–1446.CrossRef Graciolli FG, Neves KR, Barreto F, Barreto DV, Dos Reis LM, Canziani ME, Sabbagh Y, Carvalho AB, Jorgetti V, Elias RM et al: The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney international 2017, 91(6):1436–1446.CrossRef
4.
go back to reference Torres PAU, Cohen-Solal M: Evaluation of fracture risk in chronic kidney disease. J Nephrol 2017, 30(5):653–661.CrossRef Torres PAU, Cohen-Solal M: Evaluation of fracture risk in chronic kidney disease. J Nephrol 2017, 30(5):653–661.CrossRef
5.
go back to reference Maravic M, Ostertag A, Torres PU, Cohen-Solal M. Incidence and risk factors for hip fractures in dialysis patients. Osteoporosis Int. 2014;25(1):159–65.CrossRef Maravic M, Ostertag A, Torres PU, Cohen-Solal M. Incidence and risk factors for hip fractures in dialysis patients. Osteoporosis Int. 2014;25(1):159–65.CrossRef
6.
go back to reference Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K: Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney international 1999, 56(3):1084–1093.CrossRef Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K: Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney international 1999, 56(3):1084–1093.CrossRef
7.
go back to reference Cunningham J, Sprague SM, Cannata-Andia J, Coco M, Cohen-Solal M, Fitzpatrick L, Goltzmann D, Lafage-Proust MH, Leonard M, Ott S, et al. Osteoporosis in chronic kidney disease. Am J Kidney Dis. 2004;43(3):566–71.CrossRef Cunningham J, Sprague SM, Cannata-Andia J, Coco M, Cohen-Solal M, Fitzpatrick L, Goltzmann D, Lafage-Proust MH, Leonard M, Ott S, et al. Osteoporosis in chronic kidney disease. Am J Kidney Dis. 2004;43(3):566–71.CrossRef
8.
go back to reference Fuggle NR, Curtis EM, Ward KA, Harvey NC, Dennison EM, Cooper C: Fracture prediction, imaging and screening in osteoporosis. Nature reviews Endocrinology 2019, 15(9):535–547.CrossRef Fuggle NR, Curtis EM, Ward KA, Harvey NC, Dennison EM, Cooper C: Fracture prediction, imaging and screening in osteoporosis. Nature reviews Endocrinology 2019, 15(9):535–547.CrossRef
9.
go back to reference Jamal SA, West SL, Miller PD: Fracture risk assessment in patients with chronic kidney disease. 23(4):1191–1198. Jamal SA, West SL, Miller PD: Fracture risk assessment in patients with chronic kidney disease. 23(4):1191–1198.
10.
go back to reference De Vriese AS. Should Statins Be Banned from Dialysis? J Am Soc Nephrol. 2017;28(6):1675–6.CrossRef De Vriese AS. Should Statins Be Banned from Dialysis? J Am Soc Nephrol. 2017;28(6):1675–6.CrossRef
11.
go back to reference Xiao DM, Wu Q, Fan WF, Ye XW, Niu JY, Gu Y: Effect of serum FGF-23, MGP and fetuin-A on calcium-phosphate metabolism in maintenance hemodialysis patients. Hemodialysis Int Symposium Home Hemodialysis 2013, 17(4):483–492. Xiao DM, Wu Q, Fan WF, Ye XW, Niu JY, Gu Y: Effect of serum FGF-23, MGP and fetuin-A on calcium-phosphate metabolism in maintenance hemodialysis patients. Hemodialysis Int Symposium Home Hemodialysis 2013, 17(4):483–492.
12.
go back to reference Guo YC, Yuan Q. Fibroblast growth factor 23 and bone mineralisation. Int J Oral Sci. 2015;7(1):8–13.CrossRef Guo YC, Yuan Q. Fibroblast growth factor 23 and bone mineralisation. Int J Oral Sci. 2015;7(1):8–13.CrossRef
13.
go back to reference Vogt I, Haffner D, Leifheit-Nestler M: FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins 2019, 11(11). Vogt I, Haffner D, Leifheit-Nestler M: FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins 2019, 11(11).
14.
go back to reference Bouksila M, Mrad M, Kaabachi W, Kalai E, Smaoui W, Rekik S, Krir A, Issaoui N, Hamzaoui K, Sahli H et al: Correlation of Fgf23 and Balp with Bone Mineral Density in Hemodialysis Patients. Journal of medical biochemistry 2019, 38(4):418–426.CrossRef Bouksila M, Mrad M, Kaabachi W, Kalai E, Smaoui W, Rekik S, Krir A, Issaoui N, Hamzaoui K, Sahli H et al: Correlation of Fgf23 and Balp with Bone Mineral Density in Hemodialysis Patients. Journal of medical biochemistry 2019, 38(4):418–426.CrossRef
15.
go back to reference Yang WP, Chang HH, Li HY, Lai YC, Huang TY, Tsai KS, Lin KH, Lin DT, Jou ST, Lu MY et al: Iron Overload Associated Endocrine Dysfunction Leading to Lower Bone Mineral Density in Thalassemia Major. The Journal of clinical endocrinology and metabolism 2020. Yang WP, Chang HH, Li HY, Lai YC, Huang TY, Tsai KS, Lin KH, Lin DT, Jou ST, Lu MY et al: Iron Overload Associated Endocrine Dysfunction Leading to Lower Bone Mineral Density in Thalassemia Major. The Journal of clinical endocrinology and metabolism 2020.
16.
go back to reference Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A, Franekova J, Lemaire S, Kautzner J, Jarolim P: Association of Fibroblast Growth Factor-23 Levels and Angiotensin-Converting Enzyme Inhibition in Chronic Systolic Heart Failure. JACC Heart failure 2015, 3(10):829–839.CrossRef Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A, Franekova J, Lemaire S, Kautzner J, Jarolim P: Association of Fibroblast Growth Factor-23 Levels and Angiotensin-Converting Enzyme Inhibition in Chronic Systolic Heart Failure. JACC Heart failure 2015, 3(10):829–839.CrossRef
17.
go back to reference Isakova T, Cai X, Lee J, Katz R, Cauley JA, Fried LF, Hoofnagle AN, Satterfield S, Harris TB, Shlipak MG, et al. Associations of FGF23 With Change in Bone Mineral Density and Fracture Risk in Older Individuals. J Bone Mineral Res. 2016;31(4):742–8.CrossRef Isakova T, Cai X, Lee J, Katz R, Cauley JA, Fried LF, Hoofnagle AN, Satterfield S, Harris TB, Shlipak MG, et al. Associations of FGF23 With Change in Bone Mineral Density and Fracture Risk in Older Individuals. J Bone Mineral Res. 2016;31(4):742–8.CrossRef
18.
go back to reference Wang X, Wei W, Krzeszinski JY, Wang Y, Wan Y: A Liver-Bone Endocrine Relay by IGFBP1 Promotes Osteoclastogenesis and Mediates FGF21-Induced Bone Resorption. Cell metabolism 2015, 22(5):811–824.CrossRef Wang X, Wei W, Krzeszinski JY, Wang Y, Wan Y: A Liver-Bone Endocrine Relay by IGFBP1 Promotes Osteoclastogenesis and Mediates FGF21-Induced Bone Resorption. Cell metabolism 2015, 22(5):811–824.CrossRef
19.
go back to reference Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA et al: FGF-21 as a novel metabolic regulator. The Journal of clinical investigation 2005, 115(6):1627–1635.CrossRef Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA et al: FGF-21 as a novel metabolic regulator. The Journal of clinical investigation 2005, 115(6):1627–1635.CrossRef
20.
go back to reference Anuwatmatee S, Tang S, Wu BJ, Rye KA, Ong KL: Fibroblast growth factor 21 in chronic kidney disease. Clinica chimica acta; international journal of clinical chemistry 2019, 489:196–202.CrossRef Anuwatmatee S, Tang S, Wu BJ, Rye KA, Ong KL: Fibroblast growth factor 21 in chronic kidney disease. Clinica chimica acta; international journal of clinical chemistry 2019, 489:196–202.CrossRef
21.
go back to reference Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC et al: Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proceedings of the National Academy of Sciences of the United States of America 2012, 109(8):3143–3148.CrossRef Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC et al: Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proceedings of the National Academy of Sciences of the United States of America 2012, 109(8):3143–3148.CrossRef
22.
go back to reference Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Internal Med. 2013;158(8):588–95.CrossRef Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Internal Med. 2013;158(8):588–95.CrossRef
23.
go back to reference Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ: Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults. Radiology 2019, 291(2):360–367.CrossRef Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ: Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults. Radiology 2019, 291(2):360–367.CrossRef
24.
go back to reference Jilka RL. The relevance of mouse models for investigating age-related bone loss in humans. J Gerontology Series A, Biological Sci Med Sci. 2013;68(10):1209–17.CrossRef Jilka RL. The relevance of mouse models for investigating age-related bone loss in humans. J Gerontology Series A, Biological Sci Med Sci. 2013;68(10):1209–17.CrossRef
25.
go back to reference Hou YC, Wu CC, Liao MT, Shyu JF, Hung CF, Yen TH, Lu CL, Lu KC: Role of nutritional vitamin D in osteoporosis treatment. Clinica chimica acta; international journal of clinical chemistry 2018, 484:179–191.CrossRef Hou YC, Wu CC, Liao MT, Shyu JF, Hung CF, Yen TH, Lu CL, Lu KC: Role of nutritional vitamin D in osteoporosis treatment. Clinica chimica acta; international journal of clinical chemistry 2018, 484:179–191.CrossRef
26.
go back to reference Liu S, Guo R, Simpson LG, Xiao Z-S, Burnham CE, Quarles LD: Regulation of Fibroblastic Growth Factor 23 Expression but Not Degradation by PHEX. Journal of Biological Chemistry, 278(39):37419–37426. Liu S, Guo R, Simpson LG, Xiao Z-S, Burnham CE, Quarles LD: Regulation of Fibroblastic Growth Factor 23 Expression but Not Degradation by PHEX. Journal of Biological Chemistry, 278(39):37419–37426.
27.
go back to reference Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N: Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2008, 23(6):939–948.CrossRef Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N: Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2008, 23(6):939–948.CrossRef
28.
go back to reference Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N, Richards WG: Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcified tissue international 2011, 89(2):140–150.CrossRef Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N, Richards WG: Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcified tissue international 2011, 89(2):140–150.CrossRef
29.
go back to reference Allard L, Demoncheaux N, Machuca-Gayet I, Georgess D, Coury-Lucas F, Jurdic P, Bacchetta J: Biphasic Effects of Vitamin D and FGF23 on Human Osteoclast Biology. Calcified tissue international 2015, 97(1):69–79.CrossRef Allard L, Demoncheaux N, Machuca-Gayet I, Georgess D, Coury-Lucas F, Jurdic P, Bacchetta J: Biphasic Effects of Vitamin D and FGF23 on Human Osteoclast Biology. Calcified tissue international 2015, 97(1):69–79.CrossRef
30.
go back to reference Liu S, Tang W, Zhou J, Vierthaler L, Quarles LD. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am J Phys Endocrinology Metab. 2007;293(6):E1636-1644. Liu S, Tang W, Zhou J, Vierthaler L, Quarles LD. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am J Phys Endocrinology Metab. 2007;293(6):E1636-1644.
31.
go back to reference Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Mineral Res. 2009;24(11):1879–88.CrossRef Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Mineral Res. 2009;24(11):1879–88.CrossRef
32.
go back to reference Mirza MA, Karlsson MK, Dan M, Orwoll E, Ohlsson C, Ljunggren Ö, Larsson TE: Serum fibroblast growth factor-23 (FGF‐23) and fracture risk in elderly men. Journal of Bone & Mineral Research 2011, 26. Mirza MA, Karlsson MK, Dan M, Orwoll E, Ohlsson C, Ljunggren Ö, Larsson TE: Serum fibroblast growth factor-23 (FGF‐23) and fracture risk in elderly men. Journal of Bone & Mineral Research 2011, 26.
33.
go back to reference Lane NE, Parimi N, Corr M, Yao W, Cauley JA, Nielson CM, Ix JH, Kado D, Orwoll E. Osteoporotic Fractures in Men Study G: Association of serum fibroblast growth factor 23 (FGF23) and incident fractures in older men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Mineral Res. 2013;28(11):2325–32.CrossRef Lane NE, Parimi N, Corr M, Yao W, Cauley JA, Nielson CM, Ix JH, Kado D, Orwoll E. Osteoporotic Fractures in Men Study G: Association of serum fibroblast growth factor 23 (FGF23) and incident fractures in older men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Mineral Res. 2013;28(11):2325–32.CrossRef
34.
go back to reference Staiger H, Keuper M, Berti L, Hrabě de Angelis M, Hring H-U: Fibroblast Growth Factor 21 - Metabolic Role in Mice and Men. Endocrine reviews. Staiger H, Keuper M, Berti L, Hrabě de Angelis M, Hring H-U: Fibroblast Growth Factor 21 - Metabolic Role in Mice and Men. Endocrine reviews.
35.
go back to reference Hao RH, Gao JL, Li M, Huang W, Zhu DL, Thynn HN, Dong SS, Guo Y: Association between Fibroblast Growth Factor 21 and Bone Mineral Density in Adults. Endocrine 2018, 59(2):296–303.CrossRef Hao RH, Gao JL, Li M, Huang W, Zhu DL, Thynn HN, Dong SS, Guo Y: Association between Fibroblast Growth Factor 21 and Bone Mineral Density in Adults. Endocrine 2018, 59(2):296–303.CrossRef
36.
go back to reference Hoon SC, Hyang AL, Sang WK, Eun HC: Association between Serum Fibroblast Growth Factor 21 Levels and Bone Mineral Density in Postmenopausal Women. Endocrine 2018, 33(2):273–277. Hoon SC, Hyang AL, Sang WK, Eun HC: Association between Serum Fibroblast Growth Factor 21 Levels and Bone Mineral Density in Postmenopausal Women. Endocrine 2018, 33(2):273–277.
37.
go back to reference Wu YT, Hsu BG, Wang CH, Lin YL, Lai YH, Kuo CH: Lower Serum Fibroblast Growth Factor 21 Levels are Associated with Normal Lumbar Spine Bone Mineral Density in Hemodialysis Patients. International journal of environmental research and public health 2020, 17(6). Wu YT, Hsu BG, Wang CH, Lin YL, Lai YH, Kuo CH: Lower Serum Fibroblast Growth Factor 21 Levels are Associated with Normal Lumbar Spine Bone Mineral Density in Hemodialysis Patients. International journal of environmental research and public health 2020, 17(6).
38.
go back to reference Iglesias P, Diez JJ, Fernandez-Reyes MJ, Mendez J, Bajo MA, Aguilera A, Selgas R: Growth hormone, IGF-I and its binding proteins (IGFBP-1 and – 3) in adult uraemic patients undergoing peritoneal dialysis and haemodialysis. Clinical endocrinology 2004, 60(6):741–749.CrossRef Iglesias P, Diez JJ, Fernandez-Reyes MJ, Mendez J, Bajo MA, Aguilera A, Selgas R: Growth hormone, IGF-I and its binding proteins (IGFBP-1 and – 3) in adult uraemic patients undergoing peritoneal dialysis and haemodialysis. Clinical endocrinology 2004, 60(6):741–749.CrossRef
39.
go back to reference Coate KC, Hernandez G, Thorne CA, Sun S, Le TDV, Vale K, Kliewer SA, Mangelsdorf DJ: FGF21 Is an Exocrine Pancreas Secretagogue. Cell metabolism 2017, 25(2):472–480.CrossRef Coate KC, Hernandez G, Thorne CA, Sun S, Le TDV, Vale K, Kliewer SA, Mangelsdorf DJ: FGF21 Is an Exocrine Pancreas Secretagogue. Cell metabolism 2017, 25(2):472–480.CrossRef
40.
go back to reference Pineda C, Rios R, Raya AI, Rodriguez M, Aguilera-Tejero E, Lopez I: Hypocaloric Diet Prevents the Decrease in FGF21 Elicited by High Phosphorus Intake. Nutrients 2018, 10(10). Pineda C, Rios R, Raya AI, Rodriguez M, Aguilera-Tejero E, Lopez I: Hypocaloric Diet Prevents the Decrease in FGF21 Elicited by High Phosphorus Intake. Nutrients 2018, 10(10).
41.
go back to reference Woo YC, Xu A, Wang Y, Lam KS: Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clinical endocrinology 2013, 78(4):489–496.CrossRef Woo YC, Xu A, Wang Y, Lam KS: Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clinical endocrinology 2013, 78(4):489–496.CrossRef
42.
go back to reference Hong ES, Lim C, Choi HY, Lee YK, Ku EJ, Moon JH, Park KS, Jang HC, Choi SH. Plasma fibroblast growth factor 21 levels increase with ectopic fat accumulation and its receptor levels are decreased in the visceral fat of patients with type 2 diabetes. BMJ Open Diab Res Care. 2019;7(1):e000776.CrossRef Hong ES, Lim C, Choi HY, Lee YK, Ku EJ, Moon JH, Park KS, Jang HC, Choi SH. Plasma fibroblast growth factor 21 levels increase with ectopic fat accumulation and its receptor levels are decreased in the visceral fat of patients with type 2 diabetes. BMJ Open Diab Res Care. 2019;7(1):e000776.CrossRef
43.
go back to reference Andrew IC, Vishwa S, Jeehyoung K, Heejung B: Estimating residual native kidney urea clearance in hemodialysis patients with and without 24-hour urine volume. Kidney Med 2019, 1(6): 376–382.CrossRef Andrew IC, Vishwa S, Jeehyoung K, Heejung B: Estimating residual native kidney urea clearance in hemodialysis patients with and without 24-hour urine volume. Kidney Med 2019, 1(6): 376–382.CrossRef
Metadata
Title
Fibroblast growth factor 21 (FGF21) is a sensitive marker of osteoporosis in haemodialysis patients: a cross-sectional observational study
Authors
Lili Zhu
Min Li
Qianqian Zha
Min Yang
Jirong Yu
Mingming Pan
Qing Yin
Liqiong Jiang
Meixia Xia
Bi-Cheng Liu
Bin Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2021
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-021-02393-z

Other articles of this Issue 1/2021

BMC Nephrology 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.