Skip to main content
Top
Published in: Current Osteoporosis Reports 1/2019

01-02-2019 | Osteonecrosis | Skeletal Biology and Regulation (M Forwood and A Robling, Section Editors)

Hypoxia Signaling in the Skeleton: Implications for Bone Health

Authors: Clare E. Yellowley, Damian C. Genetos

Published in: Current Osteoporosis Reports | Issue 1/2019

Login to get access

Abstract

Purpose of Review

We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair.

Recent Findings

Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes.

Summary

Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.
Literature
1.
go back to reference Monahan-Earley R, Dvorak AM, Aird WC. Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost. Wiley/Blackwell (10.1111); 2013;11 Suppl 1:46–66. Monahan-Earley R, Dvorak AM, Aird WC. Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost. Wiley/Blackwell (10.1111); 2013;11 Suppl 1:46–66.
2.
go back to reference Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell. 2009;17:755–73.CrossRefPubMed Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell. 2009;17:755–73.CrossRefPubMed
3.
go back to reference Hu C-J, Sataur A, Wang L, Chen H, Simon MC. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Tansey W, editor. Mol Biol Cell. 2007;18:4528–42.CrossRefPubMedPubMedCentral Hu C-J, Sataur A, Wang L, Chen H, Simon MC. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Tansey W, editor. Mol Biol Cell. 2007;18:4528–42.CrossRefPubMedPubMedCentral
4.
go back to reference Pawlus MR, Hu C-J. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal. 2013;25:1895–903.CrossRefPubMedPubMedCentral Pawlus MR, Hu C-J. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal. 2013;25:1895–903.CrossRefPubMedPubMedCentral
5.
go back to reference Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem. American Society for Biochemistry and Molecular Biology. 2004;279:9899–904. Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem. American Society for Biochemistry and Molecular Biology. 2004;279:9899–904.
7.
go back to reference Lin Q, Cong X, Yun Z. Differential Hypoxic Regulation of Hypoxia-Inducible Factors 1α and 2α. Mol Cancer Res. American Association for Cancer Research. 2011;9:757–65. Lin Q, Cong X, Yun Z. Differential Hypoxic Regulation of Hypoxia-Inducible Factors 1α and 2α. Mol Cancer Res. American Association for Cancer Research. 2011;9:757–65.
8.
go back to reference Stegen S, Carmeliet G. The skeletal vascular system – Breathing life into bone tissue. Bone. Elsevier. 2018;115:50–8.CrossRef Stegen S, Carmeliet G. The skeletal vascular system – Breathing life into bone tissue. Bone. Elsevier. 2018;115:50–8.CrossRef
9.
go back to reference Brighton CT, Krebs AG. Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am. 1972;54:323–32.CrossRefPubMed Brighton CT, Krebs AG. Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am. 1972;54:323–32.CrossRefPubMed
10.
go back to reference Harrison JS, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood. American Society of Hematology. 2002;99:394–4. Harrison JS, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood. American Society of Hematology. 2002;99:394–4.
11.
go back to reference Dodd JS, Raleigh JA, Gross TS. Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Physiol. 1999;277:C598–602.CrossRefPubMed Dodd JS, Raleigh JA, Gross TS. Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Physiol. 1999;277:C598–602.CrossRefPubMed
12.
13.
go back to reference Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development. Oxford University Press for The Company of Biologists Limited; 2016;143:2706–2715. Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development. Oxford University Press for The Company of Biologists Limited; 2016;143:2706–2715.
14.
go back to reference Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. Nature Publishing Group. 2014;508:269–73. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. Nature Publishing Group. 2014;508:269–73.
15.
go back to reference Guo D, Keightley A, Guthrie J, Veno PA, Harris SE, Bonewald LF. Identification of osteocyte-selective proteins. Huber C, Huber L, editors. Proteomics. Wiley-Blackwell; 2010;10:3688–3698. Guo D, Keightley A, Guthrie J, Veno PA, Harris SE, Bonewald LF. Identification of osteocyte-selective proteins. Huber C, Huber L, editors. Proteomics. Wiley-Blackwell; 2010;10:3688–3698.
16.
go back to reference Frikha-Benayed D, Basta Pljakic J, Majeska RJ, Schaffler MB. Regional differences in oxidative metabolism and mitochondrial activity among cortical bone osteocytes. Bone. Elsevier Inc. 2016;90:15–22. Frikha-Benayed D, Basta Pljakic J, Majeska RJ, Schaffler MB. Regional differences in oxidative metabolism and mitochondrial activity among cortical bone osteocytes. Bone. Elsevier Inc. 2016;90:15–22.
17.
go back to reference Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard-O'Riley R, Wilson TL, et al. Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development. Dev Biol. 2014;393:124–36.CrossRefPubMedPubMedCentral Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard-O'Riley R, Wilson TL, et al. Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development. Dev Biol. 2014;393:124–36.CrossRefPubMedPubMedCentral
18.
go back to reference Cheng S, Aghajanian P, Pourteymoor S, Alarcon C, Mohan S. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice. Sci Rep. 2016;6:35748.CrossRefPubMedPubMedCentral Cheng S, Aghajanian P, Pourteymoor S, Alarcon C, Mohan S. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice. Sci Rep. 2016;6:35748.CrossRefPubMedPubMedCentral
19.
go back to reference Weng T, Xie Y, Huang J, Luo F, Yi L, He Q, et al. Inactivation of Vhl in osteochondral progenitor cells causes high bone mass phenotype and protects against age-related bone loss in adult mice. J Bone Miner Res. 2014;29:820–9.CrossRefPubMedPubMedCentral Weng T, Xie Y, Huang J, Luo F, Yi L, He Q, et al. Inactivation of Vhl in osteochondral progenitor cells causes high bone mass phenotype and protects against age-related bone loss in adult mice. J Bone Miner Res. 2014;29:820–9.CrossRefPubMedPubMedCentral
20••.
go back to reference Wu C, Rankin EB, Castellini L, Alcudia JF, Fernandez-Alcudia J, LaGory EL, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. Cold Spring Harbor Lab; 2015;29:817–31. Deletion of individual PHD proteins in osteoprogenitors is insufficient to produce a high bone mass phenotype; high bone mass phenotypes can occur independent of changes in bone vascularity. Wu C, Rankin EB, Castellini L, Alcudia JF, Fernandez-Alcudia J, LaGory EL, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. Cold Spring Harbor Lab; 2015;29:817–31. Deletion of individual PHD proteins in osteoprogenitors is insufficient to produce a high bone mass phenotype; high bone mass phenotypes can occur independent of changes in bone vascularity.
21••.
go back to reference Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res. 2014;29:2276–86 Phd2 deletion in pre-osteoblasts decreases bone mass and microarchitecture, possibly through HIF-a-independent mechanisms that involve citamin C-induced osterix expression. CrossRefPubMed Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res. 2014;29:2276–86 Phd2 deletion in pre-osteoblasts decreases bone mass and microarchitecture, possibly through HIF-a-independent mechanisms that involve citamin C-induced osterix expression. CrossRefPubMed
22••.
go back to reference Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26 The first study to directly demonstrate genetic manipulation of oxygen-sensing in bone influences skeletal phenotype. CrossRefPubMedPubMedCentral Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26 The first study to directly demonstrate genetic manipulation of oxygen-sensing in bone influences skeletal phenotype. CrossRefPubMedPubMedCentral
23•.
go back to reference Shomento SH, Wan C, Cao X, Faugere M-C, Bouxsein ML, Clemens TL, et al. Hypoxia-inducible factors 1alpha and 2alpha exert both distinct and overlapping functions in long bone development. J Cell Biochem. 2010;109:196–204 Demonstration that HIF-1a and HIF-2a in mature osteoblasts have common and unique influence on bone microarchitecture and vascularization. CrossRefPubMed Shomento SH, Wan C, Cao X, Faugere M-C, Bouxsein ML, Clemens TL, et al. Hypoxia-inducible factors 1alpha and 2alpha exert both distinct and overlapping functions in long bone development. J Cell Biochem. 2010;109:196–204 Demonstration that HIF-1a and HIF-2a in mature osteoblasts have common and unique influence on bone microarchitecture and vascularization. CrossRefPubMed
24••.
go back to reference Stegen S, Stockmans I, Moermans K, Thienpont B, Maxwell PH, Carmeliet P, et al. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nat Comms. Nature Publishing Group; 2018;9:2557. Osteocytic oxygen-sensing exerts profound effects on bone via epistatic inhibition of Sost expression. Stegen S, Stockmans I, Moermans K, Thienpont B, Maxwell PH, Carmeliet P, et al. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nat Comms. Nature Publishing Group; 2018;9:2557. Osteocytic oxygen-sensing exerts profound effects on bone via epistatic inhibition of Sost expression.
25••.
go back to reference Loots GG, Robling AG, Chang JC, Murugesh DK, Bajwa J, Carlisle C, et al. Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects. Bone. 2018;116:307–14 Using an osteocytic cre driver, osteocytic deletion of Vhl influences bone mass through Wnt-dependent and -independent mechanisms. CrossRefPubMed Loots GG, Robling AG, Chang JC, Murugesh DK, Bajwa J, Carlisle C, et al. Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects. Bone. 2018;116:307–14 Using an osteocytic cre driver, osteocytic deletion of Vhl influences bone mass through Wnt-dependent and -independent mechanisms. CrossRefPubMed
26.
go back to reference Street J, Bao M, deGuzman L, Bunting S, Peale FV, Ferrara N, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;99:9656–61.CrossRefPubMed Street J, Bao M, deGuzman L, Bunting S, Peale FV, Ferrara N, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;99:9656–61.CrossRefPubMed
27.
go back to reference Deckers MML, van Bezooijen RL, van der Horst G, Hoogendam J, Van Der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143:1545–53.CrossRefPubMed Deckers MML, van Bezooijen RL, van der Horst G, Hoogendam J, Van Der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143:1545–53.CrossRefPubMed
28.
go back to reference Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. Nature Publishing Group. 2014;507:376–80. Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. Nature Publishing Group. 2014;507:376–80.
29.
go back to reference Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, et al. VEGF-independent cellautonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res. Wiley-Blackwell. 2012;27:596–609.CrossRef Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, et al. VEGF-independent cellautonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res. Wiley-Blackwell. 2012;27:596–609.CrossRef
30.
go back to reference Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.CrossRefPubMed Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.CrossRefPubMed
31.
go back to reference Little R, Carulli J, Del Mastro R, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.CrossRefPubMed Little R, Carulli J, Del Mastro R, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.CrossRefPubMed
32.
go back to reference Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem. 2007;282:20715–27.CrossRefPubMed Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem. 2007;282:20715–27.CrossRefPubMed
33.
go back to reference Tu X, Rhee Y, Condon K, Bivi N, Allen MR, Dwyer D, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2011. Tu X, Rhee Y, Condon K, Bivi N, Allen MR, Dwyer D, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2011.
34.
go back to reference Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281:23698–711.CrossRefPubMed Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281:23698–711.CrossRefPubMed
35.
go back to reference Williams BO, Insogna KL. Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res. 2009;24:171–8.CrossRefPubMed Williams BO, Insogna KL. Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res. 2009;24:171–8.CrossRefPubMed
36.
go back to reference Kato M, Patel M, Levasseur R, Lobov I, Chang B, Glass D, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:303–14.CrossRefPubMedPubMedCentral Kato M, Patel M, Levasseur R, Lobov I, Chang B, Glass D, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:303–14.CrossRefPubMedPubMedCentral
37.
go back to reference Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286:19489–500.CrossRefPubMedPubMedCentral Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286:19489–500.CrossRefPubMedPubMedCentral
38.
go back to reference Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Research. 2005;15:928–35.CrossRefPubMedPubMedCentral Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Research. 2005;15:928–35.CrossRefPubMedPubMedCentral
39.
go back to reference Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.CrossRefPubMed Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.CrossRefPubMed
40.
go back to reference Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89.CrossRefPubMedPubMedCentral Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89.CrossRefPubMedPubMedCentral
41.
go back to reference Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7.CrossRefPubMedPubMedCentral Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7.CrossRefPubMedPubMedCentral
42.
go back to reference Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278:24113–7.CrossRefPubMed Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278:24113–7.CrossRefPubMed
43.
go back to reference Nakanishi R, Shimizu M, Mori M, Akiyama H, Okudaira S, Otsuki B, et al. Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. J Bone Miner Res. 2006;21:1713–21.CrossRefPubMed Nakanishi R, Shimizu M, Mori M, Akiyama H, Okudaira S, Otsuki B, et al. Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. J Bone Miner Res. 2006;21:1713–21.CrossRefPubMed
44.
go back to reference Bodine PVN, Zhao W, Kharode YP, Bex FJ, Lambert A-J, Goad MB, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004;18:1222–37.CrossRefPubMed Bodine PVN, Zhao W, Kharode YP, Bex FJ, Lambert A-J, Goad MB, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004;18:1222–37.CrossRefPubMed
45.
go back to reference Riddle RC, Leslie JM, Gross TS, Clemens TL. Hypoxia-inducible factor-1α protein negatively regulates load-induced bone formation. J Biol Chem. 2011;286:44449–56.CrossRefPubMedPubMedCentral Riddle RC, Leslie JM, Gross TS, Clemens TL. Hypoxia-inducible factor-1α protein negatively regulates load-induced bone formation. J Biol Chem. 2011;286:44449–56.CrossRefPubMedPubMedCentral
46.
go back to reference Chen D, Li Y, Zhou Z, Xing Y, Zhong Y, Zou X, et al. Synergistic inhibition of Wnt pathway by HIF-1α and osteoblast-specific transcription factor osterix (Osx) in osteoblasts. Samant R, editor. PLoS ONE. Public Library of Science; 2012;7:e52948. Chen D, Li Y, Zhou Z, Xing Y, Zhong Y, Zou X, et al. Synergistic inhibition of Wnt pathway by HIF-1α and osteoblast-specific transcription factor osterix (Osx) in osteoblasts. Samant R, editor. PLoS ONE. Public Library of Science; 2012;7:e52948.
47.
go back to reference Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, et al. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem. 2010;110:457–67.PubMedPubMedCentral Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, et al. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem. 2010;110:457–67.PubMedPubMedCentral
48.
go back to reference Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, et al. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. Samant R, editor. PLoS ONE. Public Library of Science; 2014;9:e112744. Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, et al. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. Samant R, editor. PLoS ONE. Public Library of Science; 2014;9:e112744.
49.
go back to reference Bouaziz W, Sigaux J, Modrowski D, Devignes C-S, Funck-Brentano T, Richette P, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice. Proc Natl Acad Sci USA. National Academy of Sciences. 2016;113:5453–8.CrossRef Bouaziz W, Sigaux J, Modrowski D, Devignes C-S, Funck-Brentano T, Richette P, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice. Proc Natl Acad Sci USA. National Academy of Sciences. 2016;113:5453–8.CrossRef
50.
go back to reference Javaheri B, Stern AR, Lara N, Dallas M, Zhao H, Liu Y, et al. Deletion of a single β-catenin allele in osteocytes abolishes the bone anabolic response to loading. J Bone Miner Res. 2014;29:705–15.CrossRefPubMedPubMedCentral Javaheri B, Stern AR, Lara N, Dallas M, Zhao H, Liu Y, et al. Deletion of a single β-catenin allele in osteocytes abolishes the bone anabolic response to loading. J Bone Miner Res. 2014;29:705–15.CrossRefPubMedPubMedCentral
51.
go back to reference Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA. National Acad Sciences; 2015 :201409857. Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA. National Acad Sciences; 2015 :201409857.
52.
go back to reference Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA. National Academy of Sciences; 2006;103:18154–9. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA. National Academy of Sciences; 2006;103:18154–9.
53.
go back to reference Lee DC, Sohn HA, Park Z-Y, Oh S, Kang YK, Lee K-M, et al. A lactate-induced response to hypoxia. Cell. 2015;161:595–609.CrossRefPubMed Lee DC, Sohn HA, Park Z-Y, Oh S, Kang YK, Lee K-M, et al. A lactate-induced response to hypoxia. Cell. 2015;161:595–609.CrossRefPubMed
54.
go back to reference Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009;15:682–9.CrossRefPubMedPubMedCentral Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009;15:682–9.CrossRefPubMedPubMedCentral
55.
go back to reference Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruine AP, Baldwin HS, et al. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J. Federation of American Societies for Experimental Biology; 2010;24:4153–66. Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruine AP, Baldwin HS, et al. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J. Federation of American Societies for Experimental Biology; 2010;24:4153–66.
56.
go back to reference Xing W, Pourteymoor S, Mohan S. Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway. Physiological Genomics. American Physiological Society Bethesda, MD; 2011;43:749–57. Xing W, Pourteymoor S, Mohan S. Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway. Physiological Genomics. American Physiological Society Bethesda, MD; 2011;43:749–57.
57.
go back to reference Lahtinen T, Alhava EM, Karjalainen P, Romppanen T. The effect of age on blood flow in the proximal femur in man. Journal of Nuclear Medicine. 1981;22:966–72.PubMed Lahtinen T, Alhava EM, Karjalainen P, Romppanen T. The effect of age on blood flow in the proximal femur in man. Journal of Nuclear Medicine. 1981;22:966–72.PubMed
58.
go back to reference Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone. 1987;8:157–64.CrossRefPubMed Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone. 1987;8:157–64.CrossRefPubMed
59.
go back to reference Prisby RD, Dominguez JM, Muller-Delp J, Allen MR, Delp MD. Aging and estrogen status: a possible endothelium-dependent vascular coupling mechanism in bone remodeling. Malaval L, editor. PLoS ONE. Public Library of Science; 2012;7:e48564. Prisby RD, Dominguez JM, Muller-Delp J, Allen MR, Delp MD. Aging and estrogen status: a possible endothelium-dependent vascular coupling mechanism in bone remodeling. Malaval L, editor. PLoS ONE. Public Library of Science; 2012;7:e48564.
60.
go back to reference Senel K, Baykal T, Seferoglu B, Altas EU, Baygutalp F, Ugur M, et al. Circulating vascular endothelial growth factor concentrations in patients with postmenopausal osteoporosis. Arch Med Sci. Termedia. 2013;9:709–12.CrossRef Senel K, Baykal T, Seferoglu B, Altas EU, Baygutalp F, Ugur M, et al. Circulating vascular endothelial growth factor concentrations in patients with postmenopausal osteoporosis. Arch Med Sci. Termedia. 2013;9:709–12.CrossRef
61.
go back to reference Zhao Q, Shen X, Zhang W, Zhu G, Qi J, Deng L. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone. Elsevier Inc. 2012;50:763–70. Zhao Q, Shen X, Zhang W, Zhu G, Qi J, Deng L. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone. Elsevier Inc. 2012;50:763–70.
62.
go back to reference Komatsu D, Hadjiargyrou M. Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair. Bone. 2004;34:680–8.CrossRefPubMed Komatsu D, Hadjiargyrou M. Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair. Bone. 2004;34:680–8.CrossRefPubMed
63.
go back to reference Toupadakis CA, Wong A, Genetos DC, Chung D-J, Murugesh D, Anderson MJ, et al. Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair. J Orthop Res. 2012. Toupadakis CA, Wong A, Genetos DC, Chung D-J, Murugesh D, Anderson MJ, et al. Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair. J Orthop Res. 2012.
64.
65.
go back to reference Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, et al. Activation of the hypoxiainducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci USA. 2008;105:686–91.CrossRefPubMed Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, et al. Activation of the hypoxiainducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci USA. 2008;105:686–91.CrossRefPubMed
66.
go back to reference Donneys A, Deshpande SS, Tchanque-Fossuo CN, Johnson KL, Blough JT, Perosky JE, et al. Deferoxamine expedites consolidation during mandibular distraction osteogenesis. Bone. 2013;55:384–90.CrossRefPubMedPubMedCentral Donneys A, Deshpande SS, Tchanque-Fossuo CN, Johnson KL, Blough JT, Perosky JE, et al. Deferoxamine expedites consolidation during mandibular distraction osteogenesis. Bone. 2013;55:384–90.CrossRefPubMedPubMedCentral
67.
go back to reference Shen X, Wan C, Ramaswamy G, Mavalli M, Wang Y, Duvall CL, et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res. 2009;27:1298–305.CrossRefPubMedPubMedCentral Shen X, Wan C, Ramaswamy G, Mavalli M, Wang Y, Duvall CL, et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res. 2009;27:1298–305.CrossRefPubMedPubMedCentral
68.
go back to reference Stewart R, Goldstein J, Eberhardt A, Chu GT-MG, Gilbert S. Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma. 2011;25:472–6.CrossRefPubMedPubMedCentral Stewart R, Goldstein J, Eberhardt A, Chu GT-MG, Gilbert S. Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma. 2011;25:472–6.CrossRefPubMedPubMedCentral
69.
go back to reference Fan L, Li J, Yu Z, Dang X, Wang K. Hypoxia-inducible factor prolyl hydroxylase inhibitor prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis. PLoS ONE. Public Library of Science; 2014;9:e107774. Pre-clinical evidence that small molecule PHD antagonists can mitigate avascular necrosis. Fan L, Li J, Yu Z, Dang X, Wang K. Hypoxia-inducible factor prolyl hydroxylase inhibitor prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis. PLoS ONE. Public Library of Science; 2014;9:e107774. Pre-clinical evidence that small molecule PHD antagonists can mitigate avascular necrosis.
70•.
go back to reference Rankin EB, Wu C, Khatri R, Wilson TLS, Andersen R, Araldi E, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149:63–74 Vhl deletion in osteoprogenitors causes a high bone mass and HIF-dependent polycythemia. CrossRefPubMedPubMedCentral Rankin EB, Wu C, Khatri R, Wilson TLS, Andersen R, Araldi E, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149:63–74 Vhl deletion in osteoprogenitors causes a high bone mass and HIF-dependent polycythemia. CrossRefPubMedPubMedCentral
71.
go back to reference Rabadi S, Udo I, Leaf DE, Waikar SS, Christov M. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Renal Physiol. 2018;314:F132–9.CrossRefPubMed Rabadi S, Udo I, Leaf DE, Waikar SS, Christov M. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Renal Physiol. 2018;314:F132–9.CrossRefPubMed
72.
go back to reference Flamme I, Ellinghaus P, Urrego D, Kruger T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. Jelkmann WEB, editor. PLoS ONE. Public Library of Science; 2017;12:e0186979. Flamme I, Ellinghaus P, Urrego D, Kruger T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. Jelkmann WEB, editor. PLoS ONE. Public Library of Science; 2017;12:e0186979.
73.
go back to reference Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. Haematologica. 2017;102:e427–30.CrossRefPubMed Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. Haematologica. 2017;102:e427–30.CrossRefPubMed
74.
go back to reference Zhang Q, Doucet M, Tomlinson RE, Han X, Quarles LD, Collins MT, et al. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res. 2016;4:175–6. Zhang Q, Doucet M, Tomlinson RE, Han X, Quarles LD, Collins MT, et al. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res. 2016;4:175–6.
75.
go back to reference Blau JE, Collins MT. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. Springer US. 2015;16:165–74.CrossRef Blau JE, Collins MT. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. Springer US. 2015;16:165–74.CrossRef
76.
go back to reference Johnson EO, Soultanis K, Soucacos PN. Vascular anatomy and microcirculation of skeletal zones vulnerable to osteonecrosis: vascularization of the femoral head. Orthop Clin North Am. 2004;35:285–91–viii. Johnson EO, Soultanis K, Soucacos PN. Vascular anatomy and microcirculation of skeletal zones vulnerable to osteonecrosis: vascularization of the femoral head. Orthop Clin North Am. 2004;35:285–91–viii.
77.
go back to reference Hong JM, Kim T-H, Chae S-C, Koo K-H, Lee YJ, Park EK, et al. Association study of hypoxia inducible factor 1alpha (HIF1alpha) with osteonecrosis of femoral head in a Korean population. Osteoarthr Cartil. 2007;15:688–94.CrossRefPubMed Hong JM, Kim T-H, Chae S-C, Koo K-H, Lee YJ, Park EK, et al. Association study of hypoxia inducible factor 1alpha (HIF1alpha) with osteonecrosis of femoral head in a Korean population. Osteoarthr Cartil. 2007;15:688–94.CrossRefPubMed
78.
go back to reference Hong JM, Kim TH, Kim HJ, Park EK, Yang EK, Kim SY. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head. Exp Mol Med. Nature Publishing Group. 2010;42:376–85.CrossRef Hong JM, Kim TH, Kim HJ, Park EK, Yang EK, Kim SY. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head. Exp Mol Med. Nature Publishing Group. 2010;42:376–85.CrossRef
79.
go back to reference Radke S, Battmann A, Jatzke S, Eulert J, Jakob F, Schutze N. Expression of the angiomatrix and angiogenic proteins CYR61, CTGF, and VEGF in osteonecrosis of the femoral head. J Orthop Res. Wiley-Blackwell. 2006;24:945–52.CrossRef Radke S, Battmann A, Jatzke S, Eulert J, Jakob F, Schutze N. Expression of the angiomatrix and angiogenic proteins CYR61, CTGF, and VEGF in osteonecrosis of the femoral head. J Orthop Res. Wiley-Blackwell. 2006;24:945–52.CrossRef
80.
go back to reference Weinstein RS, Hogan EA, Borrelli MJ, Liachenko S, O'Brien CA, Manolagas SC. The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology. 2017;158:3817–31.CrossRefPubMedPubMedCentral Weinstein RS, Hogan EA, Borrelli MJ, Liachenko S, O'Brien CA, Manolagas SC. The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology. 2017;158:3817–31.CrossRefPubMedPubMedCentral
81.
go back to reference Fowler TW, Acevedo C, Mazur CM, Hall-Glenn F, Fields AJ, Bale HA, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017;7:44618.CrossRefPubMedPubMedCentral Fowler TW, Acevedo C, Mazur CM, Hall-Glenn F, Fields AJ, Bale HA, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017;7:44618.CrossRefPubMedPubMedCentral
82.
go back to reference Wickham N, Crawford A, Carney AS, Goss AN. Bisphosphonate-associated osteonecrosis of the external auditory canal. J Laryngol Otol. Cambridge University Press; 2013;127 Suppl 2:S51–3. Wickham N, Crawford A, Carney AS, Goss AN. Bisphosphonate-associated osteonecrosis of the external auditory canal. J Laryngol Otol. Cambridge University Press; 2013;127 Suppl 2:S51–3.
83.
go back to reference McCadden L, Leonard CG, Primrose WJ. Bisphosphonate-induced osteonecrosis of the ear canal: our experience and a review of the literature. J Laryngol Otol. Cambridge University Press. 2018;132:372–4.CrossRef McCadden L, Leonard CG, Primrose WJ. Bisphosphonate-induced osteonecrosis of the ear canal: our experience and a review of the literature. J Laryngol Otol. Cambridge University Press. 2018;132:372–4.CrossRef
84.
go back to reference Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res. 2003;9:2893–7.PubMed Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res. 2003;9:2893–7.PubMed
85.
go back to reference Xiong H, Wei L, Hu Y, Zhang C, Peng B. Effect of alendronate on alveolar bone resorption and angiogenesis in rats with experimental periapical lesions. Int Endod J. Wiley/Blackwell (10.1111); 2010;43:485–91. Xiong H, Wei L, Hu Y, Zhang C, Peng B. Effect of alendronate on alveolar bone resorption and angiogenesis in rats with experimental periapical lesions. Int Endod J. Wiley/Blackwell (10.1111); 2010;43:485–91.
86.
go back to reference Soki FN, Li X, Berry J, Koh A, Sinder BP, Qian X, et al. The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches. J Cell Biochem. Wiley-Blackwell. 2013;114:67–78.CrossRef Soki FN, Li X, Berry J, Koh A, Sinder BP, Qian X, et al. The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches. J Cell Biochem. Wiley-Blackwell. 2013;114:67–78.CrossRef
87.
go back to reference Zhang L, Wang T, Chang M, Kaiser C, Kim JD, Wu T, et al. Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model. J Bone Miner Res. Wiley-Blackwell. 2017;32:1870–83.CrossRef Zhang L, Wang T, Chang M, Kaiser C, Kim JD, Wu T, et al. Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model. J Bone Miner Res. Wiley-Blackwell. 2017;32:1870–83.CrossRef
88.
go back to reference Jilka RL, O'Brien CA, Bartell SM, Weinstein RS, Manolagas SC. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res. Wiley-Blackwell. 2010;25:2427–37.CrossRef Jilka RL, O'Brien CA, Bartell SM, Weinstein RS, Manolagas SC. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res. Wiley-Blackwell. 2010;25:2427–37.CrossRef
89.
go back to reference Isowa S, Shimo T, Ibaragi S, Kurio N, Okui T, Matsubara K, et al. PTHrP regulates angiogenesis and bone resorption via VEGF expression. Anticancer Res. 2010;30:2755–67.PubMed Isowa S, Shimo T, Ibaragi S, Kurio N, Okui T, Matsubara K, et al. PTHrP regulates angiogenesis and bone resorption via VEGF expression. Anticancer Res. 2010;30:2755–67.PubMed
90.
go back to reference Prisby R, Guignandon A, Vanden-Bossche A, Mac-Way F, Linossier M-T, Thomas M, et al. Intermittent PTH(1-84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res. 2011;26:2583–96.CrossRefPubMed Prisby R, Guignandon A, Vanden-Bossche A, Mac-Way F, Linossier M-T, Thomas M, et al. Intermittent PTH(1-84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res. 2011;26:2583–96.CrossRefPubMed
91.
go back to reference Rhee Y, Park S-Y, Kim YM, Lee S, Lim SK. Angiogenesis inhibitor attenuates parathyroid hormone-induced anabolic effect. Biomed. Pharmacother. 2009;63:63–8.CrossRefPubMed Rhee Y, Park S-Y, Kim YM, Lee S, Lim SK. Angiogenesis inhibitor attenuates parathyroid hormone-induced anabolic effect. Biomed. Pharmacother. 2009;63:63–8.CrossRefPubMed
92.
go back to reference Frey JL, Stonko DP, Faugere M-C, Riddle RC. Hypoxia-inducible factor-1α restricts the anabolic actions of parathyroid hormone. Bone Res. 2014;2:14005.CrossRefPubMedPubMedCentral Frey JL, Stonko DP, Faugere M-C, Riddle RC. Hypoxia-inducible factor-1α restricts the anabolic actions of parathyroid hormone. Bone Res. 2014;2:14005.CrossRefPubMedPubMedCentral
Metadata
Title
Hypoxia Signaling in the Skeleton: Implications for Bone Health
Authors
Clare E. Yellowley
Damian C. Genetos
Publication date
01-02-2019
Publisher
Springer US
Keyword
Osteonecrosis
Published in
Current Osteoporosis Reports / Issue 1/2019
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-019-00500-6

Other articles of this Issue 1/2019

Current Osteoporosis Reports 1/2019 Go to the issue

Skeletal Biology and Regulation (M Forwood and A Robling, Section Editors)

RAGE Signaling in Skeletal Biology

Therapeutics and Medical Management (S Jan de Beur and B Clarke, Section Editors)

Glucocorticoid-Induced Osteoporosis: New Insights into the Pathophysiology and Treatments

Therapeutics and Medical Management (S Jan de Beur and B Clarke, Section Editors)

Stopping Denosumab

Epidemiology and Pathophysiology (F Cosman and D Shoback, Section Editors)

Mechanisms Underlying Normal Fracture Healing and Risk Factors for Delayed Healing