Skip to main content
Top
Published in: Journal of Clinical Immunology 8/2022

17-08-2022 | Osteomyelitis | Original Article

Genetic and Functional Identifying of Novel STAT1 Loss-of-Function Mutations in Patients with Diverse Clinical Phenotypes

Authors: Xuemei Chen, Junjie Chen, Ran Chen, Huilin Mou, Gan Sun, Lu Yang, Yanjun Jia, Qin Zhao, Wen Wen, Lina Zhou, Yuan Ding, Xuemei Tang, Jun Yang, Yunfei An, Xiaodong Zhao

Published in: Journal of Clinical Immunology | Issue 8/2022

Login to get access

Abstract

Purpose

Mutations in signal transducer and activator of transcription 1 (STAT1) cause a broad spectrum of disease phenotypes. Heterozygous STAT1 loss-of-function (LOF) mutations cause Mendelian susceptibility to mycobacterial diseases (MSMD) infection, which is attributable to impaired IFN-γ signaling. The identification of novel mutations may extend the phenotypes associated with autosomal dominant (AD) STAT1 deficiency.

Methods

Five patients with heterozygous STAT1 variations were recruited and their clinical and immunologic phenotypes were analyzed, with particular reference to JAK-STAT1 signaling pathways.

Results

Four, heterozygous STAT1 deficiency mutations were identified, three of which were novel mutations. Two of the mutations were previously unreported mRNA splicing mutations in AD STAT1-deficient patients. Patients with heterozygous STAT1 deficiency suffered not only mycobacterial infection, but also intracellular non-mycobacterial bacterial infection and congenital multiple malformations. AD-LOF mutation impaired IFN-γ-mediated STAT1 phosphorylation, gamma-activated sequence (GAS), and IFN-stimulated response element (ISRE) transcription activity and IFN-induced gene expression to different extents, which might account for the diverse clinical manifestations observed in these patients.

Conclusion

The infectious disease susceptibility and phenotypic spectrum of patients with AD STAT1-LOF are broader than simply MSMD. The susceptibility to infections and immunological deficiency phenotypes, observed in AD-LOF patients, confirms the importance of STAT1 in host–pathogen interaction and immunity. However, variability in the nature and extent of these phenotypes suggests that functional analysis is required to identify accurately novel, heterozygous STAT1 mutations, associated with pathogenicity. Aberrant splice of STAT1 RNA could result in AD-LOF for STAT1 signaling which need more cases for confirmation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jouanguy E, Vogt G, Feinberg J, Chapgier A, Santos F, Prochnicka-chalufour A, et al. Novel STAT1 Alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2006;2(8):e131.PubMedPubMedCentralCrossRef Jouanguy E, Vogt G, Feinberg J, Chapgier A, Santos F, Prochnicka-chalufour A, et al. Novel STAT1 Alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2006;2(8):e131.PubMedPubMedCentralCrossRef
2.
go back to reference Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit : a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit : a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef
4.
go back to reference Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE, Kuriyan J. Crystal Structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998;93(5):827–39.PubMedCrossRef Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE, Kuriyan J. Crystal Structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998;93(5):827–39.PubMedCrossRef
5.
go back to reference Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32.PubMedCrossRef Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32.PubMedCrossRef
7.
go back to reference Bluyssen HAR, Levy DE. Stat2 is a transcriptional activator that requires sequence- specific contacts provided by Stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997;272(7):4600–5.PubMedCrossRef Bluyssen HAR, Levy DE. Stat2 is a transcriptional activator that requires sequence- specific contacts provided by Stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997;272(7):4600–5.PubMedCrossRef
8.
go back to reference Vairo D, Tassone L, Tabellini G, Tamassia N, Gasperini S, Bazzoni F, et al. Severe impairment of IFN-r and IFN-α responses in cells of a patient with a novel STAT1 splicing mutation. Blood. 2011;118(7):1806–18.PubMedCrossRef Vairo D, Tassone L, Tabellini G, Tamassia N, Gasperini S, Bazzoni F, et al. Severe impairment of IFN-r and IFN-α responses in cells of a patient with a novel STAT1 splicing mutation. Blood. 2011;118(7):1806–18.PubMedCrossRef
9.
go back to reference Dupuis S, Jouanguy E, Al-hajjar S, Fieschi C, Al-mohsen IZ, Al-jumaah S, et al. Impaired response to interferon- α / β and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91.PubMedCrossRef Dupuis S, Jouanguy E, Al-hajjar S, Fieschi C, Al-mohsen IZ, Al-jumaah S, et al. Impaired response to interferon- α / β and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91.PubMedCrossRef
10.
go back to reference Chapgier A, Wynn RF, Jouanguy E, Filipe-santos O, Zhang S, Hawkins K, et al. Human complete Stat-1 Deficiency is associated with to some low virulence viruses in vivo. J Immunol. 2006;176(8):5078–83.PubMedCrossRef Chapgier A, Wynn RF, Jouanguy E, Filipe-santos O, Zhang S, Hawkins K, et al. Human complete Stat-1 Deficiency is associated with to some low virulence viruses in vivo. J Immunol. 2006;176(8):5078–83.PubMedCrossRef
11.
go back to reference Chapgier A, Kong X, Boisson-dupuis S, Jouanguy E, Averbuch D, Feinberg J, et al. A partial form of recessive STAT1 deficiency in humans. J Clin Investig. 2009;119(6):1502–14.PubMedPubMedCentralCrossRef Chapgier A, Kong X, Boisson-dupuis S, Jouanguy E, Averbuch D, Feinberg J, et al. A partial form of recessive STAT1 deficiency in humans. J Clin Investig. 2009;119(6):1502–14.PubMedPubMedCentralCrossRef
12.
go back to reference Kong X, Ciancanelli M, Al-hajjar S, Alsina L, Zumwalt T, Bustamante J, et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood. 2010;116(26):5895–906.PubMedPubMedCentralCrossRef Kong X, Ciancanelli M, Al-hajjar S, Alsina L, Zumwalt T, Bustamante J, et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood. 2010;116(26):5895–906.PubMedPubMedCentralCrossRef
13.
go back to reference Kristensen IA, Veirum JE. Novel STAT1 Alleles in a patient with impaired resistance to mycobacteria. J Clin Immunol. 2011;31(2):265–71.PubMedCrossRef Kristensen IA, Veirum JE. Novel STAT1 Alleles in a patient with impaired resistance to mycobacteria. J Clin Immunol. 2011;31(2):265–71.PubMedCrossRef
14.
go back to reference Sakata S, Tsumura M, Matsubayashi T, Karakawa S, Kimura S, Tamaura M, et al. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int Immunol. 2020;32:663–71.PubMedCrossRef Sakata S, Tsumura M, Matsubayashi T, Karakawa S, Kimura S, Tamaura M, et al. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int Immunol. 2020;32:663–71.PubMedCrossRef
15.
go back to reference Boehmer DFR, Koehler LM, Magg T, Metzger P, Rohlfs M, Ahlfeld J, et al. A novel complete autosomal recessive STAT1 LOF variant causes immunodeficiency with hemophagocytic lymphohistiocytosis-like hyperinflammation. J Allergy Clin Immunol Pract. 2020;8(9):3102–11.PubMedPubMedCentralCrossRef Boehmer DFR, Koehler LM, Magg T, Metzger P, Rohlfs M, Ahlfeld J, et al. A novel complete autosomal recessive STAT1 LOF variant causes immunodeficiency with hemophagocytic lymphohistiocytosis-like hyperinflammation. J Allergy Clin Immunol Pract. 2020;8(9):3102–11.PubMedPubMedCentralCrossRef
16.
go back to reference Rosain J, Nishimura S, Sakura F, Deyà-martinez À, Torun YA, Roynard M, et al. Genetic, Immunological, and clinical features of 32 patients with autosomal recessive STAT1 deficiency. J Immunol. 2021;207(1):133–52.PubMedCrossRef Rosain J, Nishimura S, Sakura F, Deyà-martinez À, Torun YA, Roynard M, et al. Genetic, Immunological, and clinical features of 32 patients with autosomal recessive STAT1 deficiency. J Immunol. 2021;207(1):133–52.PubMedCrossRef
17.
go back to reference Tsumura M, Okada S, Sakai H, et al. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum Mutat. 2012;33(9):1377–87.PubMedPubMedCentralCrossRef Tsumura M, Okada S, Sakai H, et al. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum Mutat. 2012;33(9):1377–87.PubMedPubMedCentralCrossRef
18.
go back to reference Sampaio EP, Bax HI, Hsu AP, Kristosturyan E, Pechacek J, Chandrasekaran P, Paulson ML, Dias DL, Spalding C, Uzel G, Ding L, McFarland E, Holland SM. A novel STAT1 mutation associated with disseminated mycobacterial disease. J Clin Immunol. 2012 Aug;32(4):681–9.PubMedPubMedCentralCrossRef Sampaio EP, Bax HI, Hsu AP, Kristosturyan E, Pechacek J, Chandrasekaran P, Paulson ML, Dias DL, Spalding C, Uzel G, Ding L, McFarland E, Holland SM. A novel STAT1 mutation associated with disseminated mycobacterial disease. J Clin Immunol. 2012 Aug;32(4):681–9.PubMedPubMedCentralCrossRef
19.
go back to reference Hirata O, Okada S, Tsumura M, Kagawa R, Miki M, Kawaguchi H, et al. Heterozygosity for the Y701C STAT1 mutation in a multiplex kindred with multifocal osteomyelitis. Haematologica. 2013;98(10):1641–9.PubMedPubMedCentralCrossRef Hirata O, Okada S, Tsumura M, Kagawa R, Miki M, Kawaguchi H, et al. Heterozygosity for the Y701C STAT1 mutation in a multiplex kindred with multifocal osteomyelitis. Haematologica. 2013;98(10):1641–9.PubMedPubMedCentralCrossRef
20.
go back to reference Ueki M, Yamada M, Ito K, Tozawa Y, Morino S, Horikoshi Y, et al. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin Immunol. 2017;174:24–31.PubMedCrossRef Ueki M, Yamada M, Ito K, Tozawa Y, Morino S, Horikoshi Y, et al. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin Immunol. 2017;174:24–31.PubMedCrossRef
21.
go back to reference Kagawa R, Fujiki R, Tsumura M, et al. Alanine-scanning mutagenesis of human STAT1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol. 2017;140(1):232–41.PubMedCrossRef Kagawa R, Fujiki R, Tsumura M, et al. Alanine-scanning mutagenesis of human STAT1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol. 2017;140(1):232–41.PubMedCrossRef
22.
go back to reference Boudjemaa S, Dainese L, Heritier S, Masserot C, Hachemane S, Casanova JL, Coulomb A. Disseminated Bacillus Calmette-Guerin osteomyelitis in twin sisters related to STAT1 Gene deficiency. Pediatr Dev Pathol. 2017;20(3):255–61.PubMedCrossRef Boudjemaa S, Dainese L, Heritier S, Masserot C, Hachemane S, Casanova JL, Coulomb A. Disseminated Bacillus Calmette-Guerin osteomyelitis in twin sisters related to STAT1 Gene deficiency. Pediatr Dev Pathol. 2017;20(3):255–61.PubMedCrossRef
23.
go back to reference Bhattad S, Unni J, Varkey S. MSMD in a 3-Generation multiplex kindred due to autosomal dominant STAT1 deficiency. J Clin Immunol. 2021;41:259–61.PubMedCrossRef Bhattad S, Unni J, Varkey S. MSMD in a 3-Generation multiplex kindred due to autosomal dominant STAT1 deficiency. J Clin Immunol. 2021;41:259–61.PubMedCrossRef
24.
go back to reference Dupuis S, Dargemont C, Fieschi C. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293(5528):300–3.PubMedCrossRef Dupuis S, Dargemont C, Fieschi C. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293(5528):300–3.PubMedCrossRef
25.
go back to reference Liu L, Okada S, Kong X-F, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–48.PubMedPubMedCentralCrossRef Liu L, Okada S, Kong X-F, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–48.PubMedPubMedCentralCrossRef
26.
go back to reference Soltész B, Tóth B, Shabashova N, Bondarenko A, Okada S, Cypowyj S, et al. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet. 2013;50(9):567–78.PubMedCrossRef Soltész B, Tóth B, Shabashova N, Bondarenko A, Okada S, Cypowyj S, et al. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet. 2013;50(9):567–78.PubMedCrossRef
27.
go back to reference Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64.PubMedPubMedCentralCrossRef Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64.PubMedPubMedCentralCrossRef
28.
go back to reference Langerak AW, Van Den Beemd R, Wolvers-Tettero ILM, Boor PPC, Van Lochem EG, Hooijkaas H, et al. Molecular and flow cytometric analysis of the Vβ repertoire for clonality assessment in mature TCRαβ t-cell proliferations. Blood. 2001;98(1):165–73.PubMedCrossRef Langerak AW, Van Den Beemd R, Wolvers-Tettero ILM, Boor PPC, Van Lochem EG, Hooijkaas H, et al. Molecular and flow cytometric analysis of the Vβ repertoire for clonality assessment in mature TCRαβ t-cell proliferations. Blood. 2001;98(1):165–73.PubMedCrossRef
29.
go back to reference Paz-artal E, Corell A, Allende LM, Lo A, Rez MAGA, Varela P, et al. A Point mutation in a domain of gamma interferon receptor 1 Provokes severe immunodeficiency. Clin Diagn Lab Immunol. 2001;8(1):133–7.PubMedPubMedCentralCrossRef Paz-artal E, Corell A, Allende LM, Lo A, Rez MAGA, Varela P, et al. A Point mutation in a domain of gamma interferon receptor 1 Provokes severe immunodeficiency. Clin Diagn Lab Immunol. 2001;8(1):133–7.PubMedPubMedCentralCrossRef
30.
go back to reference Zerbe CS, Holland SM. Disseminated Histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis An Off Publ Infect Dis Soc of America. 2005;41(4):e38-41.CrossRef Zerbe CS, Holland SM. Disseminated Histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis An Off Publ Infect Dis Soc of America. 2005;41(4):e38-41.CrossRef
31.
go back to reference Vinh DC, Masannat F, Dzioba RB, Galgiani JN, Holland SM. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2009;49(6):e62–5.PubMedCrossRef Vinh DC, Masannat F, Dzioba RB, Galgiani JN, Holland SM. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2009;49(6):e62–5.PubMedCrossRef
32.
go back to reference Dorman SE, Picard C, Lammas D, Heyne K, Van DJT, Baretto R, et al. Clinical features of dominant and recessive interferon- γ receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.PubMedCrossRef Dorman SE, Picard C, Lammas D, Heyne K, Van DJT, Baretto R, et al. Clinical features of dominant and recessive interferon- γ receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.PubMedCrossRef
33.
go back to reference Hsu KK, Shea KM, Stevenson AE, Pelton SI. Underlying conditions in children with invasive pneumococcal disease in the conjugate vaccine era. Pediatr Infec Dis J. 2011;30(3):251–70.CrossRef Hsu KK, Shea KM, Stevenson AE, Pelton SI. Underlying conditions in children with invasive pneumococcal disease in the conjugate vaccine era. Pediatr Infec Dis J. 2011;30(3):251–70.CrossRef
34.
go back to reference Lee W, Huang J, Lin T. Chinese Patients with Defective IL-12 / 23-Interferon-γ circuit in Taiwan : Partial dominant interferon-γ receptor 1 mutation presenting as cutaneous granuloma and IL-12 receptor β 1 mutation as pneumatocele. J Clin Immunol. 2009;29(2):238–45.PubMedCrossRef Lee W, Huang J, Lin T. Chinese Patients with Defective IL-12 / 23-Interferon-γ circuit in Taiwan : Partial dominant interferon-γ receptor 1 mutation presenting as cutaneous granuloma and IL-12 receptor β 1 mutation as pneumatocele. J Clin Immunol. 2009;29(2):238–45.PubMedCrossRef
35.
go back to reference Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X Jr, JED. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev. 2006;20(24):3372–81.PubMedPubMedCentralCrossRef Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X Jr, JED. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev. 2006;20(24):3372–81.PubMedPubMedCentralCrossRef
36.
go back to reference Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem. 2003;278(36):34133–40.PubMedCrossRef Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem. 2003;278(36):34133–40.PubMedCrossRef
37.
go back to reference Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, et al. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell. 2005;17(6):761–71.PubMedCrossRef Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, et al. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell. 2005;17(6):761–71.PubMedCrossRef
38.
go back to reference Mcbride KM, Banninger G, Mcdonald C, Reich NC. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J. 2002;21(7):1754–63.PubMedPubMedCentralCrossRef Mcbride KM, Banninger G, Mcdonald C, Reich NC. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J. 2002;21(7):1754–63.PubMedPubMedCentralCrossRef
39.
go back to reference Mcbride KM, Mcdonald C, Reich NC. Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J. 2000;19(22):6196–206.PubMedPubMedCentralCrossRef Mcbride KM, Mcdonald C, Reich NC. Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J. 2000;19(22):6196–206.PubMedPubMedCentralCrossRef
40.
go back to reference Begitt A, Meyer T, Van RM, Vinkemeier U. Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc Natl Acad Sci. 2000;97(19):10418–23.PubMedPubMedCentralCrossRef Begitt A, Meyer T, Van RM, Vinkemeier U. Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc Natl Acad Sci. 2000;97(19):10418–23.PubMedPubMedCentralCrossRef
41.
go back to reference Chen X, Xu Q, Li X, Wang L, Yang L, Chen Z, et al. Molecular and phenotypic characterization of nine patients with STAT1 GOF mutations in China. J Clin Immunol. 2020;40(1):82–95.PubMedCrossRef Chen X, Xu Q, Li X, Wang L, Yang L, Chen Z, et al. Molecular and phenotypic characterization of nine patients with STAT1 GOF mutations in China. J Clin Immunol. 2020;40(1):82–95.PubMedCrossRef
42.
go back to reference Zl A, Mi ZB, Chao YC, et al. Two novel STAT1 mutations cause Mendelian susceptibility to mycobacterial disease. Biochem Biophys Res Commun. 2022 Feb;5(591):124–9. Zl A, Mi ZB, Chao YC, et al. Two novel STAT1 mutations cause Mendelian susceptibility to mycobacterial disease. Biochem Biophys Res Commun. 2022 Feb;5(591):124–9.
Metadata
Title
Genetic and Functional Identifying of Novel STAT1 Loss-of-Function Mutations in Patients with Diverse Clinical Phenotypes
Authors
Xuemei Chen
Junjie Chen
Ran Chen
Huilin Mou
Gan Sun
Lu Yang
Yanjun Jia
Qin Zhao
Wen Wen
Lina Zhou
Yuan Ding
Xuemei Tang
Jun Yang
Yunfei An
Xiaodong Zhao
Publication date
17-08-2022
Publisher
Springer US
Keyword
Osteomyelitis
Published in
Journal of Clinical Immunology / Issue 8/2022
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-022-01339-w

Other articles of this Issue 8/2022

Journal of Clinical Immunology 8/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.