Skip to main content
Top
Published in: Calcified Tissue International 5/2011

01-11-2011 | Original Research

Osteocalcin Gene Expression Is Regulated by Wild-Type p53

Authors: Hankui Chen, Emily Hays, Jay Liboon, Chris Neely, Kevin Kolman, Nalini Chandar

Published in: Calcified Tissue International | Issue 5/2011

Login to get access

Abstract

The tumor-suppressor p53 is a transcription factor that regulates a number of genes in the process of cell-cycle inhibition, apoptosis, and DNA damage. Recent studies have revealed a crucial role for p53 in bone remodeling. In our previous studies we have shown that p53 is an important regulator of osteoblast differentiation. In this study we investigated the role of p53 in the regulation of human osteocalcin gene expression. We observed that osteocalcin promoter activity could be upregulated by both exogenous and endogenous p53 and downregulated by p53-specific small interfering RNA. DNA affinity immunoblotting assay showed that p53 can bind to the human osteocalcin promoter in vitro. We further identified a p53 response element within the osteocalcin promoter region using a chromatin immunoprecipitation assay. Furthermore, we observed an additive effect of p53 and VDR on the regulation of osteocalcin promoter activity. Our findings suggest that p53 may directly target the human osteocalcin gene and positively affect osteocalcin gene expression.
Literature
1.
go back to reference Hopyan S, Gokgoz N, Bell RS, Andrulis IL, Alman BA, Wunder JS (1999) Expression of osteocalcin and its transcriptional regulators core-binding factor alpha 1 and MSX2 in osteoid-forming tumours. J Orthop Res 17:633–638PubMedCrossRef Hopyan S, Gokgoz N, Bell RS, Andrulis IL, Alman BA, Wunder JS (1999) Expression of osteocalcin and its transcriptional regulators core-binding factor alpha 1 and MSX2 in osteoid-forming tumours. J Orthop Res 17:633–638PubMedCrossRef
2.
go back to reference Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid–containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451PubMedCrossRef Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid–containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451PubMedCrossRef
3.
go back to reference Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452PubMedCrossRef Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452PubMedCrossRef
4.
go back to reference Goldberg D, Polly P, Eisman JA, Morrison NA (1996) Identification of an osteocalcin gene promoter sequence that binds AP1. J Cell Biochem 60:447–457PubMedCrossRef Goldberg D, Polly P, Eisman JA, Morrison NA (1996) Identification of an osteocalcin gene promoter sequence that binds AP1. J Cell Biochem 60:447–457PubMedCrossRef
5.
go back to reference Tamura M, Noda M (1994) Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors. J Cell Biol 126:773–782PubMedCrossRef Tamura M, Noda M (1994) Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors. J Cell Biol 126:773–782PubMedCrossRef
6.
go back to reference Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15:1858–1869PubMed Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15:1858–1869PubMed
7.
go back to reference Hassan MQ, Javed A, Morasso MI, Karlin J, Montecino M, van Wijnen AJ, Stein GS, Stein JL, Lian JB (2004) Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 24:9248–9261PubMedCrossRef Hassan MQ, Javed A, Morasso MI, Karlin J, Montecino M, van Wijnen AJ, Stein GS, Stein JL, Lian JB (2004) Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 24:9248–9261PubMedCrossRef
8.
go back to reference Meyer T, Gustafsson JA, Carlstedt-Duke J (1997) Glucocorticoid-dependent transcriptional repression of the osteocalcin gene by competitive binding at the TATA box. DNA Cell Biol 16:919–927PubMedCrossRef Meyer T, Gustafsson JA, Carlstedt-Duke J (1997) Glucocorticoid-dependent transcriptional repression of the osteocalcin gene by competitive binding at the TATA box. DNA Cell Biol 16:919–927PubMedCrossRef
9.
go back to reference Sneddon WB, Bogado CE, Kiernan MS, Demay MB (1997) DNA sequences downstream from the vitamin D response element of the rat osteocalcin gene are required for ligand-dependent transactivation. Mol Endocrinol 11:210–217PubMedCrossRef Sneddon WB, Bogado CE, Kiernan MS, Demay MB (1997) DNA sequences downstream from the vitamin D response element of the rat osteocalcin gene are required for ligand-dependent transactivation. Mol Endocrinol 11:210–217PubMedCrossRef
10.
go back to reference Paredes R, Arriagada G, Cruzat F, Olate J, Van Wijnen A, Lian J, Stein G, Stein J, Montecino M (2004) The Runx2 transcription factor plays a key role in the 1alpha, 25-dihydroxyvitamin D3-dependent upregulation of the rat osteocalcin (OC) gene expression in osteoblastic cells. J Steroid Biochem Mol Biol 89–90:269–271PubMedCrossRef Paredes R, Arriagada G, Cruzat F, Olate J, Van Wijnen A, Lian J, Stein G, Stein J, Montecino M (2004) The Runx2 transcription factor plays a key role in the 1alpha, 25-dihydroxyvitamin D3-dependent upregulation of the rat osteocalcin (OC) gene expression in osteoblastic cells. J Steroid Biochem Mol Biol 89–90:269–271PubMedCrossRef
11.
go back to reference Sierra J, Villagra A, Paredes R, Cruzat F, Gutierrez S, Javed A, Arriagada G, Olate J, Imschenetzky M, Van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M (2003) Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol 23:3339–3351PubMedCrossRef Sierra J, Villagra A, Paredes R, Cruzat F, Gutierrez S, Javed A, Arriagada G, Olate J, Imschenetzky M, Van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M (2003) Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol 23:3339–3351PubMedCrossRef
12.
go back to reference Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484PubMedCrossRef Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484PubMedCrossRef
13.
go back to reference Aloni-Grinstein R, Zan-Bar I, Alboum I, Goldfinger N, Rotter V (1993) Wild type p53 functions as a control protein in the differentiation pathway of the B-cell lineage. Oncogene 8:3297–3305PubMed Aloni-Grinstein R, Zan-Bar I, Alboum I, Goldfinger N, Rotter V (1993) Wild type p53 functions as a control protein in the differentiation pathway of the B-cell lineage. Oncogene 8:3297–3305PubMed
14.
go back to reference Mazzaro G, Bossi G, Coen S, Sacchi A, Soddu S (1999) The role of wild-type p53 in the differentiation of primary hemopoietic and muscle cells. Oncogene 18:5831–5835PubMedCrossRef Mazzaro G, Bossi G, Coen S, Sacchi A, Soddu S (1999) The role of wild-type p53 in the differentiation of primary hemopoietic and muscle cells. Oncogene 18:5831–5835PubMedCrossRef
15.
go back to reference Cerone MA, Marchetti A, Bossi G, Blandino G, Sacchi A, Soddu S (2000) p53 is involved in the differentiation but not in the differentiation-associated apoptosis of myoblasts. Cell Death Differ 7:506–508PubMedCrossRef Cerone MA, Marchetti A, Bossi G, Blandino G, Sacchi A, Soddu S (2000) p53 is involved in the differentiation but not in the differentiation-associated apoptosis of myoblasts. Cell Death Differ 7:506–508PubMedCrossRef
16.
go back to reference Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R, Rotter V (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One 3:e3707PubMedCrossRef Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R, Rotter V (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One 3:e3707PubMedCrossRef
17.
go back to reference Chandar N, Campbell P, Novak J, Smith M (1993) Dependence of induction of osteocalcin gene expression on the presence of wild-type p53 in a murine osteosarcoma cell line. Mol Carcinog 8:299–305PubMedCrossRef Chandar N, Campbell P, Novak J, Smith M (1993) Dependence of induction of osteocalcin gene expression on the presence of wild-type p53 in a murine osteosarcoma cell line. Mol Carcinog 8:299–305PubMedCrossRef
18.
go back to reference Chandar N, Swindle J, Szajkovics A, Kolman K (2005) Relationship of bone morphogenetic protein expression during osteoblast differentiation to wild type p53. J Orthop Res 23:1345–1353PubMed Chandar N, Swindle J, Szajkovics A, Kolman K (2005) Relationship of bone morphogenetic protein expression during osteoblast differentiation to wild type p53. J Orthop Res 23:1345–1353PubMed
19.
go back to reference Schwartz KA, Lanciloti NJ, Moore MK, Campione AL, Chandar N (1999) p53 transactivity during in vitro osteoblast differentiation in a rat osteosarcoma cell line. Mol Carcinog 25:132–138PubMedCrossRef Schwartz KA, Lanciloti NJ, Moore MK, Campione AL, Chandar N (1999) p53 transactivity during in vitro osteoblast differentiation in a rat osteosarcoma cell line. Mol Carcinog 25:132–138PubMedCrossRef
20.
go back to reference Chandar N, Donehower L, Lanciloti N (2000) Reduction in p53 gene dosage diminishes differentiation capacity of osteoblasts. Anticancer Res 20:2553–2559PubMed Chandar N, Donehower L, Lanciloti N (2000) Reduction in p53 gene dosage diminishes differentiation capacity of osteoblasts. Anticancer Res 20:2553–2559PubMed
21.
go back to reference Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling. J Cell Biol 172:909–921PubMedCrossRef Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling. J Cell Biol 172:909–921PubMedCrossRef
22.
go back to reference Wang X, Kua HY, Hu Y, Guo K, Zeng Q, Wu Q, Ng HH, Karsenty G, de Crombrugghe B, Yeh J, Li B (2006) p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172:115–125PubMedCrossRef Wang X, Kua HY, Hu Y, Guo K, Zeng Q, Wu Q, Ng HH, Karsenty G, de Crombrugghe B, Yeh J, Li B (2006) p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172:115–125PubMedCrossRef
23.
go back to reference Maruyama R, Aoki F, Toyota M, Sasaki Y, Akashi H, Mita H, Suzuki H, Akino K, Ohe-Toyota M, Maruyama Y, Tatsumi H, Imai K, Shinomura Y, Tokino T (2006) Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Res 66:4574–4583PubMedCrossRef Maruyama R, Aoki F, Toyota M, Sasaki Y, Akashi H, Mita H, Suzuki H, Akino K, Ohe-Toyota M, Maruyama Y, Tatsumi H, Imai K, Shinomura Y, Tokino T (2006) Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation. Cancer Res 66:4574–4583PubMedCrossRef
24.
go back to reference Morrison NA, Shine J, Fragonas JC, Verkest V, McMenemy ML, Eisman JA (1989) 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 246:1158–1161PubMedCrossRef Morrison NA, Shine J, Fragonas JC, Verkest V, McMenemy ML, Eisman JA (1989) 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 246:1158–1161PubMedCrossRef
25.
go back to reference Liu Y, Asch H, Kulesz-Martin MF (2001) Functional quantification of DNA-binding proteins p53 and estrogen receptor in cells and tumor tissues by DNA affinity immunoblotting. Cancer Res 61:5402–5406PubMed Liu Y, Asch H, Kulesz-Martin MF (2001) Functional quantification of DNA-binding proteins p53 and estrogen receptor in cells and tumor tissues by DNA affinity immunoblotting. Cancer Res 61:5402–5406PubMed
26.
go back to reference Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711PubMedCrossRef Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711PubMedCrossRef
27.
go back to reference el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49PubMedCrossRef el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49PubMedCrossRef
28.
go back to reference Chandar N, Billig B, McMaster J, Novak J (1992) Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 65:208–214PubMedCrossRef Chandar N, Billig B, McMaster J, Novak J (1992) Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 65:208–214PubMedCrossRef
29.
go back to reference Almog N, Rotter V (1997) Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1333:F1–F27PubMed Almog N, Rotter V (1997) Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1333:F1–F27PubMed
30.
go back to reference Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53PubMedCrossRef Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53PubMedCrossRef
32.
go back to reference Kommagani R, Whitlatch A, Leonard MK, Kadakia MP (2010) p73 is essential for vitamin D-mediated osteoblastic differentiation. Cell Death Differ 17:398–407PubMedCrossRef Kommagani R, Whitlatch A, Leonard MK, Kadakia MP (2010) p73 is essential for vitamin D-mediated osteoblastic differentiation. Cell Death Differ 17:398–407PubMedCrossRef
33.
go back to reference Tataria M, Quarto N, Longaker MT, Sylvester KG (2006) Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J Pediatr Surg 41:624–632PubMedCrossRef Tataria M, Quarto N, Longaker MT, Sylvester KG (2006) Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J Pediatr Surg 41:624–632PubMedCrossRef
34.
go back to reference Montecino M, Stein JL, Stein GS, Lian JB, van Wijnen AJ, Cruzat F, Gutierrez S, Olate J, Marcellini S, Gutierrez JL (2007) Nucleosome organization and targeting of SWI/SNF chromatin-remodeling complexes: contributions of the DNA sequence. Biochem Cell Biol 85:419–425PubMedCrossRef Montecino M, Stein JL, Stein GS, Lian JB, van Wijnen AJ, Cruzat F, Gutierrez S, Olate J, Marcellini S, Gutierrez JL (2007) Nucleosome organization and targeting of SWI/SNF chromatin-remodeling complexes: contributions of the DNA sequence. Biochem Cell Biol 85:419–425PubMedCrossRef
35.
go back to reference Morimoto I, Sasaki Y, Ishida S, Imai K, Tokino T (2002) Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer 33:270–278PubMedCrossRef Morimoto I, Sasaki Y, Ishida S, Imai K, Tokino T (2002) Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer 33:270–278PubMedCrossRef
Metadata
Title
Osteocalcin Gene Expression Is Regulated by Wild-Type p53
Authors
Hankui Chen
Emily Hays
Jay Liboon
Chris Neely
Kevin Kolman
Nalini Chandar
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 5/2011
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-011-9533-x

Other articles of this Issue 5/2011

Calcified Tissue International 5/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.