Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2019

Open Access 01-12-2019 | Osteoarthrosis | Research article

Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR

Authors: Nan Hu, Yun Gao, Chathuraka T. Jayasuriya, Wenguang Liu, Heng Du, Jing Ding, Meng Feng, Qian Chen

Published in: Arthritis Research & Therapy | Issue 1/2019

Login to get access

Abstract

Background

While bone marrow-derived mesenchymal stem cells (BMSC) are established sources for stem cell-based cartilage repair therapy, articular cartilage-derived mesenchymal stem cells from osteoarthritis patients (OA-MSC) are new and potentially attractive candidates. We compared OA-MSC and BMSC in chondrogenic potentials, gene expression, and regulation by miR-365, a mechanical-responsive microRNA in cartilage (Guan et al., FASEB J 25: 4457–4466, 2011).

Methods

To overcome the limited number of OA-MSC, a newly established human OA-MSC cell line (Jayasuriya et al., Sci Rep 8: 7044, 2018) was utilized for analysis and comparison to BMSC. Chondrogenesis was induced by the chondrogenic medium in monolayer cell culture. After chondrogenic induction, chondrogenesis and mineralization were assessed by Alcian blue and Alizarin red staining respectively. MiRNA and mRNA levels were quantified by real-time PCR while protein levels were determined by western blot analysis at different time points. Immunohistochemistry was performed with cartilage-specific miR-365 over-expression transgenic mice.

Results

Upon chondrogenic induction, OA-MSC underwent rapid chondrogenesis in comparison to BMSC as shown by Alcian blue staining and activation of ACAN and COL2A1 gene expression. Chondrogenic induction also activated mineralization and the expression of hypertrophic and osteogenic genes in OA-MSC while only hypertrophic genes were activated in BMSC. MiR-365 expression was activated by chondrogenic induction in both OA-MSC and BMSC. Transfection of miR-365 in OA-MSC induced chondrogenic, hypertrophic, and osteogenic genes expression while miR-365 inhibition suppressed the expression of these genes. Over-expression of miR-365 upregulated markers of OA-MSC and hypertrophy and increased OA scores in adult mouse articular cartilage.

Conclusions

Induction of chondrogenesis can activate mineralization, hypertrophic, and osteogenic genes in OA-MSC. MiR-365 appears to be a master regulator of these differentiation processes in OA-MSC during OA pathogenesis. These findings have important implications for cartilage repair therapy using cartilage derived stem cells from OA patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mobasheri A, Kalamegam G, Musumeci G, Batt ME. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78(3):188–98.CrossRef Mobasheri A, Kalamegam G, Musumeci G, Batt ME. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78(3):188–98.CrossRef
2.
go back to reference Elder SH, Cooley AJ Jr, Borazjani A, Sowell BL, To H, Tran SC. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model. Tissue Eng Part A. 2009;15(10):3025–36.CrossRef Elder SH, Cooley AJ Jr, Borazjani A, Sowell BL, To H, Tran SC. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model. Tissue Eng Part A. 2009;15(10):3025–36.CrossRef
3.
go back to reference Jayasuriya CT, Hu N, Li J, Lemme N, Terek R, Ehrlich MG, et al. Molecular characterization of mesenchymal stem cells in human osteoarthritis cartilage reveals contribution to the OA phenotype. Sci Rep. 2018;8(1):7044.CrossRef Jayasuriya CT, Hu N, Li J, Lemme N, Terek R, Ehrlich MG, et al. Molecular characterization of mesenchymal stem cells in human osteoarthritis cartilage reveals contribution to the OA phenotype. Sci Rep. 2018;8(1):7044.CrossRef
4.
go back to reference Nelson L, McCarthy HE, Fairclough J, Williams R, Archer CW. Evidence of a viable Pool of stem cells within human osteoarthritic cartilage. Cartilage. 2014;5(4):203–14.CrossRef Nelson L, McCarthy HE, Fairclough J, Williams R, Archer CW. Evidence of a viable Pool of stem cells within human osteoarthritic cartilage. Cartilage. 2014;5(4):203–14.CrossRef
5.
go back to reference Hattori S, Oxford C, Reddi AH. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun. 2007;358(1):99–103.CrossRef Hattori S, Oxford C, Reddi AH. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun. 2007;358(1):99–103.CrossRef
6.
go back to reference Fu C, Yan Z, Xu H, Zhang C, Zhang Q, Wei A, et al. Isolation, identification and differentiation of human embryonic cartilage stem cells. Cell Biol Int. 2015;39(7):777–87.CrossRef Fu C, Yan Z, Xu H, Zhang C, Zhang Q, Wei A, et al. Isolation, identification and differentiation of human embryonic cartilage stem cells. Cell Biol Int. 2015;39(7):777–87.CrossRef
7.
go back to reference Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev. 2006;16(2):203–8.CrossRef Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev. 2006;16(2):203–8.CrossRef
8.
go back to reference Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–6.CrossRef Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–6.CrossRef
9.
go back to reference Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9(4):293–302.CrossRef Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9(4):293–302.CrossRef
10.
go back to reference Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell–derived neurogenesis. Stem Cells. 2006;24(4):857–64.CrossRef Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell–derived neurogenesis. Stem Cells. 2006;24(4):857–64.CrossRef
11.
go back to reference Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.CrossRef Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.CrossRef
12.
go back to reference Guan YJ, Yang X, Wei L, Chen Q. MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J. 2011;25(12):4457–66.CrossRef Guan YJ, Yang X, Wei L, Chen Q. MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J. 2011;25(12):4457–66.CrossRef
13.
go back to reference Yang X, Guan Y, Tian S, Wang Y, Sun K, Chen Q. Mechanical and IL-1β responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int J Mol Sci. 2016;17(4):436.CrossRef Yang X, Guan Y, Tian S, Wang Y, Sun K, Chen Q. Mechanical and IL-1β responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int J Mol Sci. 2016;17(4):436.CrossRef
14.
go back to reference Yang K, Gao Y, Yang M, Xu Z, Chen Q. Creating conditional dual fluorescence labeled transgenic animals for studying function of small noncoding RNAs. Conn Tissue Res. 2017;58(1):103–15.CrossRef Yang K, Gao Y, Yang M, Xu Z, Chen Q. Creating conditional dual fluorescence labeled transgenic animals for studying function of small noncoding RNAs. Conn Tissue Res. 2017;58(1):103–15.CrossRef
15.
go back to reference Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil. 2010;18(3):S17–23.CrossRef Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil. 2010;18(3):S17–23.CrossRef
16.
go back to reference Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4(4):415–28.CrossRef Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4(4):415–28.CrossRef
17.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.CrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.CrossRef
18.
go back to reference De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.CrossRef De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.CrossRef
19.
go back to reference Huang YZ, Xie HQ, Silini A, Parolini O, Zhang Y, Deng L, et al. Mesenchymal stem/progenitor cells derived from articular cartilage, synovial membrane and synovial fluid for cartilage regeneration: current status and future perspectives. Stem Cell Rev. 2017;13(5):575–86.CrossRef Huang YZ, Xie HQ, Silini A, Parolini O, Zhang Y, Deng L, et al. Mesenchymal stem/progenitor cells derived from articular cartilage, synovial membrane and synovial fluid for cartilage regeneration: current status and future perspectives. Stem Cell Rev. 2017;13(5):575–86.CrossRef
20.
go back to reference Prockop DJ. Marrow stromal cells as stem cells for non-hematopoietic tissues. Science. 1997;276:71–4.CrossRef Prockop DJ. Marrow stromal cells as stem cells for non-hematopoietic tissues. Science. 1997;276:71–4.CrossRef
21.
go back to reference van Osch GJ, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, et al. Cartilage repair: past and future – lessons for regenerative medicine. J Cell Mol Med. 2009;13(5):792–810.CrossRef van Osch GJ, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, et al. Cartilage repair: past and future – lessons for regenerative medicine. J Cell Mol Med. 2009;13(5):792–810.CrossRef
22.
go back to reference Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng. 2010;20(3):145–58.PubMed Ronziere MC, Perrier E, Mallein-Gerin F, Freyria AM. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng. 2010;20(3):145–58.PubMed
23.
go back to reference Mwale F, Stachura D, Roughley P, Antoniou J. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res. 2006;24(8):1791–8.CrossRef Mwale F, Stachura D, Roughley P, Antoniou J. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res. 2006;24(8):1791–8.CrossRef
24.
go back to reference Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54(10):3254–66.CrossRef Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54(10):3254–66.CrossRef
25.
go back to reference Jayasuriya CT, Chen Q. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connect Tissue Res. 2015;56(4):265–71.CrossRef Jayasuriya CT, Chen Q. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connect Tissue Res. 2015;56(4):265–71.CrossRef
26.
go back to reference Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–6.CrossRef Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–6.CrossRef
27.
go back to reference Pitsillides AA, Beier F. Cartilage biology in osteoarthritis—lessons from developmental biology. Nat Rev Rheumatol. 2011;7(11):654–63.CrossRef Pitsillides AA, Beier F. Cartilage biology in osteoarthritis—lessons from developmental biology. Nat Rev Rheumatol. 2011;7(11):654–63.CrossRef
28.
go back to reference Sandell LJ, Aigner T. Articular cartilage and changes in arthritis: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–13.CrossRef Sandell LJ, Aigner T. Articular cartilage and changes in arthritis: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–13.CrossRef
29.
go back to reference Jayasuriya CT, Chen Q. Role of inflammation in osteoarthritis. Rheumatol Curr Res. 2013;3:121. Jayasuriya CT, Chen Q. Role of inflammation in osteoarthritis. Rheumatol Curr Res. 2013;3:121.
30.
go back to reference Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev. 2005;33(4):195–200.CrossRef Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev. 2005;33(4):195–200.CrossRef
31.
go back to reference Xu Z, Xiao SB, Xu P, Xie Q, Cao L, Wang D, et al. miR-365, a novel negative regulator of IL-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J Biol Chem. 2011;286(24):21401–12.CrossRef Xu Z, Xiao SB, Xu P, Xie Q, Cao L, Wang D, et al. miR-365, a novel negative regulator of IL-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J Biol Chem. 2011;286(24):21401–12.CrossRef
32.
go back to reference Wei F, Zhou J, Wei X, Zhang J, Fleming BC, Terek R, et al. Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. Osteoarthr Cartil. 2012;20(7):755–63.CrossRef Wei F, Zhou J, Wei X, Zhang J, Fleming BC, Terek R, et al. Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. Osteoarthr Cartil. 2012;20(7):755–63.CrossRef
33.
go back to reference Xu D, Gao Y, Hu N, Wu L, Chen Q. miR-365 ameliorates dexamethasone-induced suppression of osteogenesis in MC3T3-E1 cells by targeting HDAC4. Int J Mol Sci. 2017;18:977–86.CrossRef Xu D, Gao Y, Hu N, Wu L, Chen Q. miR-365 ameliorates dexamethasone-induced suppression of osteogenesis in MC3T3-E1 cells by targeting HDAC4. Int J Mol Sci. 2017;18:977–86.CrossRef
Metadata
Title
Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR
Authors
Nan Hu
Yun Gao
Chathuraka T. Jayasuriya
Wenguang Liu
Heng Du
Jing Ding
Meng Feng
Qian Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2019
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-019-1949-0

Other articles of this Issue 1/2019

Arthritis Research & Therapy 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.