Skip to main content
Top
Published in: Skeletal Radiology 11/2023

Open Access 08-05-2023 | Osteoarthrosis | Review Article

Morphological assessment of cartilage and osteoarthritis in clinical practice and research: Intermediate-weighted fat-suppressed sequences and beyond

Authors: Patrick Omoumi, Charbel Mourad, Jean-Baptiste Ledoux, Tom Hilbert

Published in: Skeletal Radiology | Issue 11/2023

Login to get access

Abstract

Magnetic resonance imaging (MRI) is widely regarded as the primary modality for the morphological assessment of cartilage and all other joint tissues involved in osteoarthritis. 2D fast spin echo fat-suppressed intermediate-weighted (FSE FS IW) sequences with a TE between 30 and 40ms have stood the test of time and are considered the cornerstone of MRI protocols for clinical practice and trials. These sequences offer a good balance between sensitivity and specificity and provide appropriate contrast and signal within the cartilage as well as between cartilage, articular fluid, and subchondral bone. Additionally, FS IW sequences enable the evaluation of menisci, ligaments, synovitis/effusion, and bone marrow edema-like signal changes. This review article provides a rationale for the use of FSE FS IW sequences in the morphological assessment of cartilage and osteoarthritis, along with a brief overview of other clinically available sequences for this indication. Additionally, the article highlights ongoing research efforts aimed at improving FSE FS IW sequences through 3D acquisitions with enhanced resolution, shortened examination times, and exploring the potential benefits of different magnetic field strengths. While most of the literature on cartilage imaging focuses on the knee, the concepts presented here are applicable to all joints.

Key points

1. MRI is currently considered the modality of reference for a “whole-joint” morphological assessment of osteoarthritis.
2. Fat-suppressed intermediate-weighted sequences remain the keystone of MRI protocols for the assessment of cartilage morphology, as well as other structures involved in osteoarthritis.
3. Trends for further development in the field of cartilage and joint imaging include 3D FSE imaging, faster acquisition including AI-based acceleration, and synthetic imaging providing multi-contrast sequences.
Literature
1.
go back to reference Roemer FW, Demehri S, Omoumi P, et al. State of the art: imaging of osteoarthritis-revisited. Radiology. 2020:2020192498. Roemer FW, Demehri S, Omoumi P, et al. State of the art: imaging of osteoarthritis-revisited. Radiology. 2020:2020192498.
2.
go back to reference Roux M, Hilbert T, Hussami M, Becce F, Kober T, Omoumi P. MRI T2 mapping of the knee providing synthetic morphologic images: comparison to conventional turbo spin-echo MRI. Radiology. 2019;293:620–30.PubMedCrossRef Roux M, Hilbert T, Hussami M, Becce F, Kober T, Omoumi P. MRI T2 mapping of the knee providing synthetic morphologic images: comparison to conventional turbo spin-echo MRI. Radiology. 2019;293:620–30.PubMedCrossRef
3.
go back to reference Colotti R, Omoumi P, Bonanno G, Ledoux JB, van Heeswijk RB. Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation. J Magn Reson Imaging. 2018;47:362–71.PubMedCrossRef Colotti R, Omoumi P, Bonanno G, Ledoux JB, van Heeswijk RB. Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation. J Magn Reson Imaging. 2018;47:362–71.PubMedCrossRef
4.
go back to reference Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol. 2022. Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol. 2022.
5.
go back to reference Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am. 2009;47:595–615.PubMedCrossRef Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am. 2009;47:595–615.PubMedCrossRef
6.
go back to reference Steinbach LS, Palmer WE, Schweitzer ME. Special focus session. MR arthrography. Radiographics. 2002;22:1223–46.PubMedCrossRef Steinbach LS, Palmer WE, Schweitzer ME. Special focus session. MR arthrography. Radiographics. 2002;22:1223–46.PubMedCrossRef
7.
go back to reference White LM, Kramer J, Recht MP. MR imaging evaluation of the postoperative knee: ligaments, menisci, and articular cartilage. Skeletal Radiol. 2005;34:431–52.PubMedCrossRef White LM, Kramer J, Recht MP. MR imaging evaluation of the postoperative knee: ligaments, menisci, and articular cartilage. Skeletal Radiol. 2005;34:431–52.PubMedCrossRef
8.
go back to reference Heuck A, Woertler K. Posttreatment imaging of the knee: cruciate ligaments and menisci. Semin Musculoskelet Radiol. 2022;26:230–41.PubMedCrossRef Heuck A, Woertler K. Posttreatment imaging of the knee: cruciate ligaments and menisci. Semin Musculoskelet Radiol. 2022;26:230–41.PubMedCrossRef
9.
go back to reference Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80:1276–84.PubMedCrossRef Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80:1276–84.PubMedCrossRef
10.
go back to reference Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol. 1999;172:1073–80.PubMedCrossRef Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol. 1999;172:1073–80.PubMedCrossRef
11.
go back to reference Link TM. MR imaging in osteoarthritis: hardware, coils, and sequences. Radiol Clin North Am. 2009;47:617–32.PubMedCrossRef Link TM. MR imaging in osteoarthritis: hardware, coils, and sequences. Radiol Clin North Am. 2009;47:617–32.PubMedCrossRef
12.
go back to reference Omoumi P, Teixeira P, Delgado G, Chung CB. Imaging of lower limb cartilage. Top Magn Reson Imaging. 2009;20:189–201.PubMedCrossRef Omoumi P, Teixeira P, Delgado G, Chung CB. Imaging of lower limb cartilage. Top Magn Reson Imaging. 2009;20:189–201.PubMedCrossRef
13.
go back to reference Kijowski R, Davis KW, Woods MA, et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology. 2009;252:486–95.PubMedCrossRef Kijowski R, Davis KW, Woods MA, et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology. 2009;252:486–95.PubMedCrossRef
14.
go back to reference Rosas HG, De Smet AA. Magnetic resonance imaging of the meniscus. Top Magn Reson Imaging. 2009;20:151–73.PubMedCrossRef Rosas HG, De Smet AA. Magnetic resonance imaging of the meniscus. Top Magn Reson Imaging. 2009;20:151–73.PubMedCrossRef
15.
go back to reference Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics. 2014;34:981–99.PubMedCrossRef Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics. 2014;34:981–99.PubMedCrossRef
16.
go back to reference Peh WC, Chan JH. The magic angle phenomenon in tendons: effect of varying the MR echo time. Br J Radiol. 1998;71:31–6.PubMedCrossRef Peh WC, Chan JH. The magic angle phenomenon in tendons: effect of varying the MR echo time. Br J Radiol. 1998;71:31–6.PubMedCrossRef
17.
go back to reference Bydder M, Rahal A, Fullerton GD, Bydder GM. The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging. 2007;25:290–300.PubMedCrossRef Bydder M, Rahal A, Fullerton GD, Bydder GM. The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging. 2007;25:290–300.PubMedCrossRef
18.
19.
go back to reference Jung JY, Yoon YC, Kim HR, Choe B-K, Wang JH, Jung JY. Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology. 2013;268:802–13.PubMedCrossRef Jung JY, Yoon YC, Kim HR, Choe B-K, Wang JH, Jung JY. Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology. 2013;268:802–13.PubMedCrossRef
20.
21.
go back to reference Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231:31–8.PubMedCrossRef Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231:31–8.PubMedCrossRef
22.
go back to reference Waldschmidt JG, Rilling RJ, Kajdacsy-Balla AA, Boynton MD, Erickson SJ. In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls, and pathologic conditions. Radiographics. 1997;17:1387–402.PubMedCrossRef Waldschmidt JG, Rilling RJ, Kajdacsy-Balla AA, Boynton MD, Erickson SJ. In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls, and pathologic conditions. Radiographics. 1997;17:1387–402.PubMedCrossRef
23.
go back to reference Park HJ, Lee SY, Rho MH, et al. Usefulness of the fast spin-echo three-point Dixon (mDixon) image of the knee joint on 3.0-T MRI: comparison with conventional fast spin-echo T2 weighted image. Br J Radiol. 2016;89:20151074.PubMedPubMedCentralCrossRef Park HJ, Lee SY, Rho MH, et al. Usefulness of the fast spin-echo three-point Dixon (mDixon) image of the knee joint on 3.0-T MRI: comparison with conventional fast spin-echo T2 weighted image. Br J Radiol. 2016;89:20151074.PubMedPubMedCentralCrossRef
24.
go back to reference Bastian-Jordan M, Dhupelia S, McMeniman M, Lanham M, Hislop-Jambrich J. A quality audit of MRI knee exams with the implementation of a novel 2-point DIXON sequence. J Med Radiat Sci. 2019;66:163–9.PubMedPubMedCentralCrossRef Bastian-Jordan M, Dhupelia S, McMeniman M, Lanham M, Hislop-Jambrich J. A quality audit of MRI knee exams with the implementation of a novel 2-point DIXON sequence. J Med Radiat Sci. 2019;66:163–9.PubMedPubMedCentralCrossRef
25.
go back to reference Kammen BF, Padua EM, Karakas SP, et al. Clinical experience with two-point mDixon turbo spin echo as an alternative to conventional turbo spin echo for magnetic resonance imaging of the pediatric knee. Pediatr Radiol. 2019;49:791–800.PubMedCrossRef Kammen BF, Padua EM, Karakas SP, et al. Clinical experience with two-point mDixon turbo spin echo as an alternative to conventional turbo spin echo for magnetic resonance imaging of the pediatric knee. Pediatr Radiol. 2019;49:791–800.PubMedCrossRef
26.
go back to reference Hunter DJ, Altman RD, Cicuttini F, et al. OARSI Clinical Trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthritis and Cartilage. 2015;23:698–715.PubMedCrossRef Hunter DJ, Altman RD, Cicuttini F, et al. OARSI Clinical Trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthritis and Cartilage. 2015;23:698–715.PubMedCrossRef
27.
go back to reference Eckstein F, Winzheimer M, Hohe J, Englmeier KH, Reiser M. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage. 2001;9:101–11.PubMedCrossRef Eckstein F, Winzheimer M, Hohe J, Englmeier KH, Reiser M. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage. 2001;9:101–11.PubMedCrossRef
28.
go back to reference Eckstein F, Yang M, Guermazi A, et al. Reference values and Z-scores for subregional femorotibial cartilage thickness - results from a large population-based sample (Framingham) and comparison with the non-exposed Osteoarthritis Initiative reference cohort. Osteoarthr Cartil. 2010;18(10):1275–83. Eckstein F, Yang M, Guermazi A, et al. Reference values and Z-scores for subregional femorotibial cartilage thickness - results from a large population-based sample (Framingham) and comparison with the non-exposed Osteoarthritis Initiative reference cohort. Osteoarthr Cartil. 2010;18(10):1275–83.
29.
go back to reference Omoumi P, Michoux N, Larbi A, et al. Multirater agreement for grading the femoral and tibial cartilage surface lesions at CT arthrography and analysis of causes of disagreement. Eur J Radiol. 2017;88:95–101.PubMedCrossRef Omoumi P, Michoux N, Larbi A, et al. Multirater agreement for grading the femoral and tibial cartilage surface lesions at CT arthrography and analysis of causes of disagreement. Eur J Radiol. 2017;88:95–101.PubMedCrossRef
30.
go back to reference Markhardt BK, Huang BK, Spiker AM, Chang EY. Interpretation of cartilage damage at routine clinical mri: how to match arthroscopic findings. Radiographics:2022220051. Markhardt BK, Huang BK, Spiker AM, Chang EY. Interpretation of cartilage damage at routine clinical mri: how to match arthroscopic findings. Radiographics:2022220051.
31.
go back to reference Vande Berg BC, Lecouvet FE, Maldague B, Malghem J. MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis. Eur Radiol. 2004;14:208–14.PubMedCrossRef Vande Berg BC, Lecouvet FE, Maldague B, Malghem J. MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis. Eur Radiol. 2004;14:208–14.PubMedCrossRef
32.
go back to reference Wissman RD, Ingalls J, Nepute J, et al. The trochlear cleft: the “black line” of the trochlear trough. Skeletal Radiol. 2012;41:1121–6.PubMedCrossRef Wissman RD, Ingalls J, Nepute J, et al. The trochlear cleft: the “black line” of the trochlear trough. Skeletal Radiol. 2012;41:1121–6.PubMedCrossRef
33.
go back to reference Markhardt BK, Chang EY. Hypointense signal lesions of the articular cartilage: a review of current concepts. Clin Imaging. 2014;38:785–91.PubMedCrossRef Markhardt BK, Chang EY. Hypointense signal lesions of the articular cartilage: a review of current concepts. Clin Imaging. 2014;38:785–91.PubMedCrossRef
34.
go back to reference Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med. 1989;17:505–13.PubMedCrossRef Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med. 1989;17:505–13.PubMedCrossRef
36.
go back to reference Harris JD, Brophy RH, Jia G, et al. Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy. 2012;28:1728–37.PubMedCrossRef Harris JD, Brophy RH, Jia G, et al. Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy. 2012;28:1728–37.PubMedCrossRef
37.
go back to reference Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS. Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee. 2017;24:508–17.PubMedCrossRef Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS. Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee. 2017;24:508–17.PubMedCrossRef
38.
go back to reference Hayashi D, Roemer FW, Link T, et al. Latest advancements in imaging techniques in OA. Therapeutic Advances in Musculoskeletal Disease. 2022;14:1759720X2211466.CrossRef Hayashi D, Roemer FW, Link T, et al. Latest advancements in imaging techniques in OA. Therapeutic Advances in Musculoskeletal Disease. 2022;14:1759720X2211466.CrossRef
39.
go back to reference Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis and Cartilage. 2011;19:990–1002.PubMedPubMedCentralCrossRef Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis and Cartilage. 2011;19:990–1002.PubMedPubMedCentralCrossRef
40.
go back to reference Walter SS, Fritz B, Kijowski R, Fritz J. 2D versus 3D MRI of osteoarthritis in clinical practice and research. Skeletal Radiol. 2023. Walter SS, Fritz B, Kijowski R, Fritz J. 2D versus 3D MRI of osteoarthritis in clinical practice and research. Skeletal Radiol. 2023.
41.
go back to reference Shakoor D, Guermazi A, Kijowski R, et al. Diagnostic Performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology. 2018;289:71–82.PubMedCrossRef Shakoor D, Guermazi A, Kijowski R, et al. Diagnostic Performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology. 2018;289:71–82.PubMedCrossRef
42.
go back to reference Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250:839–48.PubMedCrossRef Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250:839–48.PubMedCrossRef
43.
go back to reference Omoumi P, Rubini A, Dubuc J-E, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2014;25:961–9.PubMedCrossRef Omoumi P, Rubini A, Dubuc J-E, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2014;25:961–9.PubMedCrossRef
44.
go back to reference Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol. 1997;169:1089–96.PubMedCrossRef Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol. 1997;169:1089–96.PubMedCrossRef
45.
go back to reference Link TM, Majumdar S, Peterfy C, et al. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging. 1998;16:147–55.PubMedCrossRef Link TM, Majumdar S, Peterfy C, et al. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging. 1998;16:147–55.PubMedCrossRef
46.
go back to reference Pfirrmann CWA, Duc SR, Zanetti M, Dora C, Hodler J. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology. 2008;249:236–41.PubMedCrossRef Pfirrmann CWA, Duc SR, Zanetti M, Dora C, Hodler J. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology. 2008;249:236–41.PubMedCrossRef
47.
go back to reference Konstantinidis G, Mitchell M, Boyd G, Coady C, Ghosh S, Wong I. Poor sensitivity of magnetic resonance arthrography to detect hip chondral delamination: a retrospective follow-up of 227 FAI-operated patients. Cartilage. 2021;12:162–8.PubMedCrossRef Konstantinidis G, Mitchell M, Boyd G, Coady C, Ghosh S, Wong I. Poor sensitivity of magnetic resonance arthrography to detect hip chondral delamination: a retrospective follow-up of 227 FAI-operated patients. Cartilage. 2021;12:162–8.PubMedCrossRef
48.
go back to reference Neumann J, Zhang AL, Bucknor M, et al. Acetabular cartilage delamination: performance of MRI using arthroscopy as the standard of reference. Acta Radiol. 2022:2841851221113966. Neumann J, Zhang AL, Bucknor M, et al. Acetabular cartilage delamination: performance of MRI using arthroscopy as the standard of reference. Acta Radiol. 2022:2841851221113966.
49.
go back to reference Schmaranzer F, Lerch TD, Steppacher SD, Siebenrock KA, Schmaranzer E, Tannast M. Femoral cartilage damage occurs at the zone of femoral head necrosis and can be accurately detected on traction MR arthrography of the hip in patients undergoing joint preserving hip surgery. J Hip Preserv Surg. 2021;8:28–39.PubMedPubMedCentralCrossRef Schmaranzer F, Lerch TD, Steppacher SD, Siebenrock KA, Schmaranzer E, Tannast M. Femoral cartilage damage occurs at the zone of femoral head necrosis and can be accurately detected on traction MR arthrography of the hip in patients undergoing joint preserving hip surgery. J Hip Preserv Surg. 2021;8:28–39.PubMedPubMedCentralCrossRef
50.
go back to reference Omoumi P. The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol. 2022;51(7):1365.PubMedCrossRef Omoumi P. The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol. 2022;51(7):1365.PubMedCrossRef
51.
go back to reference Ma J, Singh SK, Kumar AJ, Leeds NE, Zhan J. T2-weighted spine imaging with a fast three-point dixon technique: comparison with chemical shift selective fat suppression. J Magn Reson Imaging. 2004;20:1025–9.PubMedCrossRef Ma J, Singh SK, Kumar AJ, Leeds NE, Zhan J. T2-weighted spine imaging with a fast three-point dixon technique: comparison with chemical shift selective fat suppression. J Magn Reson Imaging. 2004;20:1025–9.PubMedCrossRef
52.
go back to reference Del Grande F, Santini F, Herzka DA, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics. 2014;34:217–33.PubMedCrossRef Del Grande F, Santini F, Herzka DA, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics. 2014;34:217–33.PubMedCrossRef
53.
go back to reference Kirchgesner T, Perlepe V, Michoux N, Larbi A, Vande BB. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence. Eur J Radiol. 2017;89:40–6.PubMedCrossRef Kirchgesner T, Perlepe V, Michoux N, Larbi A, Vande BB. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence. Eur J Radiol. 2017;89:40–6.PubMedCrossRef
54.
go back to reference Bacher S, Hajdu SD, Maeder Y, Dunet V, Hilbert T, Omoumi P. Differentiation between benign and malignant vertebral compression fractures using qualitative and quantitative analysis of a single fast spin echo T2-weighted Dixon sequence. Eur Radiol. 2021;31:9418–27.PubMedPubMedCentralCrossRef Bacher S, Hajdu SD, Maeder Y, Dunet V, Hilbert T, Omoumi P. Differentiation between benign and malignant vertebral compression fractures using qualitative and quantitative analysis of a single fast spin echo T2-weighted Dixon sequence. Eur Radiol. 2021;31:9418–27.PubMedPubMedCentralCrossRef
55.
go back to reference Zanchi F, Richard R, Hussami M, Monier A, Knebel JF, Omoumi P. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence. Eur Radiol. 2020;30:2583–93.PubMedPubMedCentralCrossRef Zanchi F, Richard R, Hussami M, Monier A, Knebel JF, Omoumi P. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence. Eur Radiol. 2020;30:2583–93.PubMedPubMedCentralCrossRef
56.
go back to reference Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone marrow metastases: T2-weighted dixon spin-echo fat images can replace T1-weighted spin-echo images. Radiology. 2018;286:948–59.PubMedCrossRef Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone marrow metastases: T2-weighted dixon spin-echo fat images can replace T1-weighted spin-echo images. Radiology. 2018;286:948–59.PubMedCrossRef
57.
go back to reference Chiabai O, Van Nieuwenhove S, Vekemans MC, et al. Whole-body MRI in oncology: can a single anatomic T2 Dixon sequence replace the combination of T1 and STIR sequences to detect skeletal metastasis and myeloma. Eur Radiol. 2022;33(1):244–57.PubMedPubMedCentralCrossRef Chiabai O, Van Nieuwenhove S, Vekemans MC, et al. Whole-body MRI in oncology: can a single anatomic T2 Dixon sequence replace the combination of T1 and STIR sequences to detect skeletal metastasis and myeloma. Eur Radiol. 2022;33(1):244–57.PubMedPubMedCentralCrossRef
58.
go back to reference Glaser C, D’Anastasi M, Theisen D, et al. Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol. 2015;19:321–7.PubMedCrossRef Glaser C, D’Anastasi M, Theisen D, et al. Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol. 2015;19:321–7.PubMedCrossRef
59.
go back to reference Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3:823–33.PubMedCrossRef Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3:823–33.PubMedCrossRef
60.
go back to reference Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD. FLASH imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson. 2011;213:533–41.PubMedCrossRef Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD. FLASH imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson. 2011;213:533–41.PubMedCrossRef
62.
go back to reference Friedrich KM, Reiter G, Kaiser B, et al. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol. 2010;78:398–405.PubMedCrossRef Friedrich KM, Reiter G, Kaiser B, et al. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol. 2010;78:398–405.PubMedCrossRef
63.
go back to reference Bach Cuadra M, Favre J, Omoumi P. Quantification in musculoskeletal imaging using computational analysis and machine learning: segmentation and radiomics. Semin Musculoskelet Radiol. 2020;24:50–64.PubMedCrossRef Bach Cuadra M, Favre J, Omoumi P. Quantification in musculoskeletal imaging using computational analysis and machine learning: segmentation and radiomics. Semin Musculoskelet Radiol. 2020;24:50–64.PubMedCrossRef
64.
go back to reference Fujinaga Y, Yoshioka H, Sakai T, Sakai Y, Souza F, Lang P. Quantitative measurement of femoral condyle cartilage in the knee by MRI: Validation study by multireaders. J Magn Reson Imaging. 2014;39:972–7.PubMedCrossRef Fujinaga Y, Yoshioka H, Sakai T, Sakai Y, Souza F, Lang P. Quantitative measurement of femoral condyle cartilage in the knee by MRI: Validation study by multireaders. J Magn Reson Imaging. 2014;39:972–7.PubMedCrossRef
65.
go back to reference Schaefer FKW, Kurz B, Schaefer PJ, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol. 2007;48:1131–7.PubMedCrossRef Schaefer FKW, Kurz B, Schaefer PJ, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol. 2007;48:1131–7.PubMedCrossRef
66.
go back to reference Rofsky NM, Lee VS, Laub G, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212:876–84.PubMedCrossRef Rofsky NM, Lee VS, Laub G, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212:876–84.PubMedCrossRef
67.
go back to reference Vandevenne JE, Vanhoenacker F, Mahachie John JM, Gelin G, Parizel PM. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff. Skeletal Radiol. 2009;38:669–74.PubMedCrossRef Vandevenne JE, Vanhoenacker F, Mahachie John JM, Gelin G, Parizel PM. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff. Skeletal Radiol. 2009;38:669–74.PubMedCrossRef
68.
go back to reference Bae WC, Dwek JR, Znamirowski R, et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology. 2010;254:837–45.PubMedPubMedCentralCrossRef Bae WC, Dwek JR, Znamirowski R, et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology. 2010;254:837–45.PubMedPubMedCentralCrossRef
69.
go back to reference Omoumi P, Bae WC, Du J, et al. Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques--feasibility study. Radiology. 2012;264:260–8.PubMedPubMedCentralCrossRef Omoumi P, Bae WC, Du J, et al. Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques--feasibility study. Radiology. 2012;264:260–8.PubMedPubMedCentralCrossRef
70.
go back to reference Cheng KY, Moazamian D, Ma Y, et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skeletal Radiol. 2023. Cheng KY, Moazamian D, Ma Y, et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skeletal Radiol. 2023.
71.
go back to reference Yoshioka H, Stevens K, Hargreaves BA, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging. 2004;20:857–64.PubMedCrossRef Yoshioka H, Stevens K, Hargreaves BA, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging. 2004;20:857–64.PubMedCrossRef
72.
go back to reference Van Dyck P, Smekens C, Roelant E, Vande Vyvere T, Snoeckx A, De Smet E. 3D CAIPIRINHA SPACE versus standard 2D TSE for routine knee MRI: a large-scale interchangeability study. Eur Radiol. 2022;32:6456–67.PubMedCrossRef Van Dyck P, Smekens C, Roelant E, Vande Vyvere T, Snoeckx A, De Smet E. 3D CAIPIRINHA SPACE versus standard 2D TSE for routine knee MRI: a large-scale interchangeability study. Eur Radiol. 2022;32:6456–67.PubMedCrossRef
73.
go back to reference Hilbert T, Omoumi P, Raudner M, Kober T. Synthetic contrasts in musculoskeletal MRI: a review. Invest Radiol. 2023;58:111–9.PubMedCrossRef Hilbert T, Omoumi P, Raudner M, Kober T. Synthetic contrasts in musculoskeletal MRI: a review. Invest Radiol. 2023;58:111–9.PubMedCrossRef
74.
go back to reference Hilbert T, Sumpf TJ, Weiland E, et al. Accelerated T2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI. J Magn Reson Imaging. 2018;48:359–68.PubMedCrossRef Hilbert T, Sumpf TJ, Weiland E, et al. Accelerated T2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI. J Magn Reson Imaging. 2018;48:359–68.PubMedCrossRef
75.
go back to reference Warntjes JB, Leinhard OD, West J, Lundberg P. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage. Magn Reson Med. 2008;60:320–9.PubMedCrossRef Warntjes JB, Leinhard OD, West J, Lundberg P. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage. Magn Reson Med. 2008;60:320–9.PubMedCrossRef
76.
go back to reference Omoumi P, Ducarouge A, Tournier A, et al. To buy or not to buy-evaluating commercial AI solutions in radiology (the ECLAIR guidelines). Eur Radiol. 2021;31:3786–96.PubMedPubMedCentralCrossRef Omoumi P, Ducarouge A, Tournier A, et al. To buy or not to buy-evaluating commercial AI solutions in radiology (the ECLAIR guidelines). Eur Radiol. 2021;31:3786–96.PubMedPubMedCentralCrossRef
77.
go back to reference Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.PubMedCrossRef Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.PubMedCrossRef
78.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.PubMedCrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.PubMedCrossRef
79.
go back to reference Garwood ER, Recht MP, White LM. Advanced imaging techniques in the knee: benefits and limitations of new rapid acquisition strategies for routine knee MRI. AJR Am J Roentgenol. 2017;209:552–60.PubMedCrossRef Garwood ER, Recht MP, White LM. Advanced imaging techniques in the knee: benefits and limitations of new rapid acquisition strategies for routine knee MRI. AJR Am J Roentgenol. 2017;209:552–60.PubMedCrossRef
80.
go back to reference Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75:63–81.PubMedCrossRef Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75:63–81.PubMedCrossRef
81.
go back to reference Del Grande F, Rashidi A, Luna R, et al. Five-minute five-sequence knee MRI using combined simultaneous multislice and parallel imaging acceleration: comparison with 10-minute parallel imaging knee MRI. Radiology. 2021;299:635–46.PubMedCrossRef Del Grande F, Rashidi A, Luna R, et al. Five-minute five-sequence knee MRI using combined simultaneous multislice and parallel imaging acceleration: comparison with 10-minute parallel imaging knee MRI. Radiology. 2021;299:635–46.PubMedCrossRef
82.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.PubMedCrossRef Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.PubMedCrossRef
83.
go back to reference Knoll F, Murrell T, Sriram A, et al. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med. 2020;84:3054–70.PubMedPubMedCentralCrossRef Knoll F, Murrell T, Sriram A, et al. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med. 2020;84:3054–70.PubMedPubMedCentralCrossRef
84.
go back to reference Subhas N, Li H, Yang M, et al. Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience. Quantitative Imaging in Medicine and Surgery. 2020;10:1748–62.PubMedPubMedCentralCrossRef Subhas N, Li H, Yang M, et al. Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience. Quantitative Imaging in Medicine and Surgery. 2020;10:1748–62.PubMedPubMedCentralCrossRef
85.
go back to reference Yu T, Hilbert T, Piredda GF et al. Validation and generalizability of self-supervised image reconstruction methods for undersampled MRI. arXiv preprint arXiv:220112535. 2022 Yu T, Hilbert T, Piredda GF et al. Validation and generalizability of self-supervised image reconstruction methods for undersampled MRI. arXiv preprint arXiv:220112535. 2022
87.
go back to reference Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR Biomed. 2016;29:1145–61.PubMedCrossRef Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR Biomed. 2016;29:1145–61.PubMedCrossRef
88.
go back to reference Khodarahmi I, Keerthivasan MB, Brinkmann IM, Grodzki D, Fritz J. Modern low-field MRI of the musculoskeletal system: practice considerations, opportunities, and challenges. Invest Radiol. 2022;58:76–87.PubMedCrossRef Khodarahmi I, Keerthivasan MB, Brinkmann IM, Grodzki D, Fritz J. Modern low-field MRI of the musculoskeletal system: practice considerations, opportunities, and challenges. Invest Radiol. 2022;58:76–87.PubMedCrossRef
Metadata
Title
Morphological assessment of cartilage and osteoarthritis in clinical practice and research: Intermediate-weighted fat-suppressed sequences and beyond
Authors
Patrick Omoumi
Charbel Mourad
Jean-Baptiste Ledoux
Tom Hilbert
Publication date
08-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 11/2023
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-023-04343-2

Other articles of this Issue 11/2023

Skeletal Radiology 11/2023 Go to the issue