Skip to main content
Top
Published in: Clinical Oral Investigations 7/2016

01-09-2016 | Original Article

Osseointegration of titanium implants with SLAffinity treatment: a histological and biomechanical study in miniature pigs

Authors: Keng-Liang Ou, Heng-Jui Hsu, Tzu-Sen Yang, Yun-Ho Lin, Chin-Sung Chen, Pei-Wen Peng

Published in: Clinical Oral Investigations | Issue 7/2016

Login to get access

Abstract

Purpose

Electrochemical oxidation following sandblasting and acid-etching (SLA) treatment has received interest as a surface modification procedure for titanium (Ti) implants (denoted as an SLAffinity surface); however, little information is available on its impacts on the in vivo performance of SLAffinity-Ti implants. The present study evaluated the osseointegration and biomechanical bone-tissue response to SLAffinity-Ti implants with micro- and nanoporous oxide layers.

Materials and methods

The interaction between blood and the tested implants was examined. In total, 144 implants with the following surfaces were used: a standard machined (M-Ti), an SLA-Ti, and an SLAffinity-Ti surface. For each animal, four implants (one M-Ti, one SLA-Ti, and two SLAffinity-Ti) were inserted into the mandibular canine-premolar area for histomorphometric observations and another four implants were inserted into the flat surface on the anteromedial aspect of the rear tibia for removal torque (RT) tests. After 2, 4, and 8 weeks of implantation, histomorphometric and RT tests were conducted.

Results

Interactions between blood and implants were better for implants with the SLAffinity-Ti surface. RT tests showed a significant improvement in fixation strength for SLAffinity-Ti implants (84.5 ± 8.7 N-cm) after 8 weeks compared to M-Ti (62.95 ± 11.5 N-cm) and SLAffinity-Ti (76.1 ± 6.6 N-cm) implants. A histological evaluation showed that osseous integration had occurred with all implants after 8 weeks. SLAffinity-Ti implants exhibited 28.5 ± 6.2 % bone-to-implant contact (BIC) at 2 weeks and 84.3 ± 8.1 % at 8 weeks. M-Ti implants exhibited BIC levels of 17.0 ± 5.4 and 76.5 ± 6.3 %, whereas SLA-Ti implants exhibited BIC levels of 28.5 ± 6.2 and 81.1 ± 8.4 % at corresponding time intervals. In terms of the peri-implant bone area (BA), values for SLAffinity-Ti implants ranged from 29.5 ± 4.1 to 88.3 ± 3.0 %. For M-Ti implants, values ranged from 20.3 ± 5.5 to 81.7 ± 4.2 %. For SLA-Ti implants, values ranged from 23.0 ± 3.5 to 84.0 ± 3.6 %.

Conclusions

Electrochemical oxidation increased the oxide layers and improved the blood interaction with SLAffinity-Ti implants, resulting in significantly higher bone apposition with the SLAffinity-Ti implants after 2 and 8 weeks of healing. An increase in resistance for the RT of SLAffinity-Ti implants over the 8-week healing period was also observed.

Clinical relevance

The use of SLAffinity-Ti implants has potential for improvement of early osseointegration.
Literature
2.
go back to reference Haas R, Mensdorff-Pouilly N, Mailath G, Watzek G (1995) Branemark single tooth implants: a preliminary report of 76 implants. J Prosthet Dent 73:274–279CrossRefPubMed Haas R, Mensdorff-Pouilly N, Mailath G, Watzek G (1995) Branemark single tooth implants: a preliminary report of 76 implants. J Prosthet Dent 73:274–279CrossRefPubMed
4.
go back to reference Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefPubMed Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefPubMed
7.
go back to reference Ou KL, Wu J, Lai WFT, Yang CB, Lo WC, Chiu LH, Bowley J (2010) Effects of the nanostructure and nanoporosity on bioactive nanohydroxyapatite/reconstituted collagen by electrodeposition. J Biomed Mater Res A 92:906–912. doi:10.1002/jbm.a.32454 PubMed Ou KL, Wu J, Lai WFT, Yang CB, Lo WC, Chiu LH, Bowley J (2010) Effects of the nanostructure and nanoporosity on bioactive nanohydroxyapatite/reconstituted collagen by electrodeposition. J Biomed Mater Res A 92:906–912. doi:10.​1002/​jbm.​a.​32454 PubMed
8.
go back to reference Huang C-F, Cheng H-C, Liu C-M, Chen C-C, Ou K-L (2009) Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging. J Alloys Compd 476:683–688CrossRef Huang C-F, Cheng H-C, Liu C-M, Chen C-C, Ou K-L (2009) Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging. J Alloys Compd 476:683–688CrossRef
9.
go back to reference Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23:491–501CrossRefPubMed Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23:491–501CrossRefPubMed
10.
go back to reference Esposito M, Coulthard P, Thomsen P, Worthington H (2005) The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. Eur J Prosthodont Restor Dent 13:15PubMed Esposito M, Coulthard P, Thomsen P, Worthington H (2005) The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. Eur J Prosthodont Restor Dent 13:15PubMed
11.
go back to reference Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL (2008) Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res 19:233–241CrossRefPubMed Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL (2008) Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res 19:233–241CrossRefPubMed
12.
go back to reference Li S, Ni J, Liu X, Zhang X, Yin S, Rong M, Guo Z, Zhou L (2012) Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: an in vitro study. J Biomed Mater Res B Appl Biomater 100:1587–1598CrossRefPubMed Li S, Ni J, Liu X, Zhang X, Yin S, Rong M, Guo Z, Zhou L (2012) Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: an in vitro study. J Biomed Mater Res B Appl Biomater 100:1587–1598CrossRefPubMed
13.
go back to reference Wennerberg A, Albrektsson T (2009) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74 Wennerberg A, Albrektsson T (2009) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74
14.
go back to reference Brett P, Harle J, Salih V, Mihoc R, Olsen I, Jones F, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35:124–133CrossRefPubMed Brett P, Harle J, Salih V, Mihoc R, Olsen I, Jones F, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35:124–133CrossRefPubMed
15.
go back to reference Cochran DL, Buser D, Ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP (2002) The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface. Clin Oral Implants Res 13:144–153CrossRefPubMed Cochran DL, Buser D, Ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP (2002) The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface. Clin Oral Implants Res 13:144–153CrossRefPubMed
16.
go back to reference Roccuzzo M, Bunino M, Prioglio F, Bianchi SD (2001) Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res 12:572–578CrossRefPubMed Roccuzzo M, Bunino M, Prioglio F, Bianchi SD (2001) Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res 12:572–578CrossRefPubMed
17.
go back to reference Bornstein MM, Lussi A, Schmid B, Belser UC, Buser D (2003) Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-year results of a prospective study in partially edentulous patients. Int J Oral Maxillofac Implants 18:659–666PubMed Bornstein MM, Lussi A, Schmid B, Belser UC, Buser D (2003) Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-year results of a prospective study in partially edentulous patients. Int J Oral Maxillofac Implants 18:659–666PubMed
18.
go back to reference Gottlow J, Barkarmo S, Sennerby L (2012) An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res 14:e204–e212CrossRefPubMed Gottlow J, Barkarmo S, Sennerby L (2012) An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res 14:e204–e212CrossRefPubMed
19.
go back to reference Zhao L, Mei S, Chu PK, Zhang Y, Wu Z (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31:5072–5082CrossRefPubMed Zhao L, Mei S, Chu PK, Zhang Y, Wu Z (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31:5072–5082CrossRefPubMed
20.
go back to reference S-i T, Tobimatsu H, Maruyama Y, Tanaki T, Jerkiewicz G (2009) Preparation and characterization of microporous layers on titanium. ACS Appl Mater Interfaces 1:2312–2319. doi:10.1021/am900474h CrossRef S-i T, Tobimatsu H, Maruyama Y, Tanaki T, Jerkiewicz G (2009) Preparation and characterization of microporous layers on titanium. ACS Appl Mater Interfaces 1:2312–2319. doi:10.​1021/​am900474h CrossRef
21.
go back to reference Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32:3395–3403CrossRefPubMed Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32:3395–3403CrossRefPubMed
22.
go back to reference Buser D, Broggini N, Wieland M, Schenk R, Denzer A, Cochran D, Hoffmann B, Lussi A, Steinemann S (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533CrossRefPubMed Buser D, Broggini N, Wieland M, Schenk R, Denzer A, Cochran D, Hoffmann B, Lussi A, Steinemann S (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533CrossRefPubMed
23.
go back to reference Lang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 22:349–356CrossRefPubMed Lang NP, Salvi GE, Huynh‐Ba G, Ivanovski S, Donos N, Bosshardt DD (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 22:349–356CrossRefPubMed
24.
go back to reference Frandsen CJ, Noh K, Brammer KS, Johnston G, Jin S (2013) Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro. Mater Sci Eng C 33:2752–2756CrossRef Frandsen CJ, Noh K, Brammer KS, Johnston G, Jin S (2013) Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro. Mater Sci Eng C 33:2752–2756CrossRef
26.
go back to reference Cheng H-C, Lee S-Y, Chen C-C, Shyng Y-C, Ou K-L (2007) Influence of hydrogen charging on the formation of nanostructural titania by anodizing with cathodic pretreatment. J Electrochem Soc 154:E13–E18CrossRef Cheng H-C, Lee S-Y, Chen C-C, Shyng Y-C, Ou K-L (2007) Influence of hydrogen charging on the formation of nanostructural titania by anodizing with cathodic pretreatment. J Electrochem Soc 154:E13–E18CrossRef
27.
go back to reference Ou K-L, Lin C-T, Chen S-L, Huang C-F, Cheng H-C, Yeh Y-M, Lin K-H (2008) Effect of multi-nano-titania film on proliferation and differentiation of mouse fibroblast cell on titanium. J Electrochem Soc 155:E79–E84CrossRef Ou K-L, Lin C-T, Chen S-L, Huang C-F, Cheng H-C, Yeh Y-M, Lin K-H (2008) Effect of multi-nano-titania film on proliferation and differentiation of mouse fibroblast cell on titanium. J Electrochem Soc 155:E79–E84CrossRef
29.
go back to reference Sennerby L, Thomsen P, Ericson LE (1992) A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int J Oral Maxillofac Implants 7:62–71PubMed Sennerby L, Thomsen P, Ericson LE (1992) A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int J Oral Maxillofac Implants 7:62–71PubMed
30.
go back to reference Huang C-F, Chiang H-J, Lin H-J, Hosseinkhani H, Ou K-L, Peng P-W (2014) Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization. J Electrochem Soc 161:G15–G20CrossRef Huang C-F, Chiang H-J, Lin H-J, Hosseinkhani H, Ou K-L, Peng P-W (2014) Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization. J Electrochem Soc 161:G15–G20CrossRef
31.
go back to reference Stubinger S, Mosch I, Robotti P, Sidler M, Klein K, Ferguson SJ, Rechenberg BV (2013) Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.32925 PubMed Stubinger S, Mosch I, Robotti P, Sidler M, Klein K, Ferguson SJ, Rechenberg BV (2013) Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep. J Biomed Mater Res B Appl Biomater. doi:10.​1002/​jbm.​b.​32925 PubMed
32.
go back to reference Gahlert M, Röhling S, Wieland M, Sprecher C, Kniha H, Milz S (2009) Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res 20:1247–1253CrossRefPubMed Gahlert M, Röhling S, Wieland M, Sprecher C, Kniha H, Milz S (2009) Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res 20:1247–1253CrossRefPubMed
33.
go back to reference Mardas N, Dereka X, Donos N, Dard M (2014) Experimental model for bone regeneration in oral and cranio-maxillo-facial surgery. J Investig Surg 27:32–49CrossRef Mardas N, Dereka X, Donos N, Dard M (2014) Experimental model for bone regeneration in oral and cranio-maxillo-facial surgery. J Investig Surg 27:32–49CrossRef
34.
go back to reference Hori N, Iwasa F, Ueno T, Takeuchi K, Tsukimura N, Yamada M, Hattori M, Yamamoto A, Ogawa T (2010) Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater 26:275–287CrossRefPubMed Hori N, Iwasa F, Ueno T, Takeuchi K, Tsukimura N, Yamada M, Hattori M, Yamamoto A, Ogawa T (2010) Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater 26:275–287CrossRefPubMed
36.
go back to reference Cheng H-C, Lee S-Y, Tsai C-M, Chen C-C, Ou K-L (2006) Effect of hydrogen on formation of nanoporous TiO2 by anodization with hydrogen-fluoride pretreatment. Electrochem Solid-State Lett 9:D25–D29CrossRef Cheng H-C, Lee S-Y, Tsai C-M, Chen C-C, Ou K-L (2006) Effect of hydrogen on formation of nanoporous TiO2 by anodization with hydrogen-fluoride pretreatment. Electrochem Solid-State Lett 9:D25–D29CrossRef
37.
go back to reference Shih Y-H, Lin C-T, Liu C-M, Chen C-C, Chen C-S, Ou K-L (2007) Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti. Appl Surf Sci 253:3678–3682CrossRef Shih Y-H, Lin C-T, Liu C-M, Chen C-C, Chen C-S, Ou K-L (2007) Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti. Appl Surf Sci 253:3678–3682CrossRef
40.
go back to reference Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, Boyan BD, Schwartz Z (2012) Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res 27:1773–1783CrossRefPubMed Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, Boyan BD, Schwartz Z (2012) Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res 27:1773–1783CrossRefPubMed
41.
go back to reference Keselowsky BG, Bridges AW, Burns KL, Tate CC, Babensee JE, LaPlaca MC, García AJ (2007) Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials 28:3626–3631CrossRefPubMedPubMedCentral Keselowsky BG, Bridges AW, Burns KL, Tate CC, Babensee JE, LaPlaca MC, García AJ (2007) Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials 28:3626–3631CrossRefPubMedPubMedCentral
42.
go back to reference Elias CN, Oshida Y, Lima JHC, Muller CA (2008) Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 1:234–242CrossRefPubMed Elias CN, Oshida Y, Lima JHC, Muller CA (2008) Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 1:234–242CrossRefPubMed
43.
go back to reference Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10:2907–2918CrossRefPubMedPubMedCentral Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10:2907–2918CrossRefPubMedPubMedCentral
44.
go back to reference Strnad J, Urban K, Povysil C, Strnad Z (2008) Secondary stability assessment of titanium implants with an alkali-etched surface: a resonance frequency analysis study in beagle dogs. Int J Oral Maxillofac Implants 23:502–512PubMed Strnad J, Urban K, Povysil C, Strnad Z (2008) Secondary stability assessment of titanium implants with an alkali-etched surface: a resonance frequency analysis study in beagle dogs. Int J Oral Maxillofac Implants 23:502–512PubMed
45.
go back to reference Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14:251–262CrossRefPubMed Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14:251–262CrossRefPubMed
46.
go back to reference Makary C, Rebaudi A, Mokbel N, Naaman N (2011) Peak insertion torque correlated to histologically and clinically evaluated bone density. Implant Dent 20:182–191CrossRefPubMed Makary C, Rebaudi A, Mokbel N, Naaman N (2011) Peak insertion torque correlated to histologically and clinically evaluated bone density. Implant Dent 20:182–191CrossRefPubMed
47.
go back to reference Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, Becker J (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 78:2171–2184CrossRefPubMed Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, Becker J (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 78:2171–2184CrossRefPubMed
48.
go back to reference Donos N, Hamlet S, Lang N, Salvi G, Huynh‐Ba G, Bosshardt D, Ivanovski S (2011) Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res 22:365–372CrossRefPubMed Donos N, Hamlet S, Lang N, Salvi G, Huynh‐Ba G, Bosshardt D, Ivanovski S (2011) Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res 22:365–372CrossRefPubMed
49.
go back to reference Bernhardt R, Kuhlisch E, Schulz MC, Eckelt U, Stadlinger B (2012) Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRμCT slices. Eur Cell Mater 23:237–247PubMed Bernhardt R, Kuhlisch E, Schulz MC, Eckelt U, Stadlinger B (2012) Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRμCT slices. Eur Cell Mater 23:237–247PubMed
Metadata
Title
Osseointegration of titanium implants with SLAffinity treatment: a histological and biomechanical study in miniature pigs
Authors
Keng-Liang Ou
Heng-Jui Hsu
Tzu-Sen Yang
Yun-Ho Lin
Chin-Sung Chen
Pei-Wen Peng
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 7/2016
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-015-1629-7

Other articles of this Issue 7/2016

Clinical Oral Investigations 7/2016 Go to the issue