Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Oseltamivir | Research

Determination of the synergistic anti-influenza effect of Huangqin Su tablet and Oseltamivir and investigation of mechanism of the tablet based on gut microbiota and network pharmacology

Authors: Xuran Cui, Xibao Liu, Feng Wang, Kun Lou, Junping Hong, Hequn Bai, Rongchu Chen, Yang Yang, Qingquan Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li Y, Reeves RM, Wang X, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019;7:e1031–45.CrossRef Li Y, Reeves RM, Wang X, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Health. 2019;7:e1031–45.CrossRef
2.
go back to reference Paules CI, Sullivan SG, Subbarao K, et al. Chasing Seasonal Influenza - The Need for a Universal Influenza Vaccine. N Engl J Med. 2018;378:7–9.CrossRef Paules CI, Sullivan SG, Subbarao K, et al. Chasing Seasonal Influenza - The Need for a Universal Influenza Vaccine. N Engl J Med. 2018;378:7–9.CrossRef
3.
go back to reference Ward BJ, Makarkov A, Séguin A, et al. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): two multicentre, randomized phase 3 trials. Lancet. 2020;396:1491–503.CrossRef Ward BJ, Makarkov A, Séguin A, et al. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): two multicentre, randomized phase 3 trials. Lancet. 2020;396:1491–503.CrossRef
4.
go back to reference Wei CJ, Crank MC, Shiver J, et al. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov. 2020;19:239–52.CrossRef Wei CJ, Crank MC, Shiver J, et al. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov. 2020;19:239–52.CrossRef
5.
go back to reference Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev. 2021;50:1968–2009.CrossRef Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev. 2021;50:1968–2009.CrossRef
6.
go back to reference Butler CC, van der Velden AW, Bongard E, et al. Oseltamivir plus usual care versus usual care for influenza-like illness in primary care: an open-label, pragmatic, randomised controlled trial. Lancet. 2020;395:42–52.CrossRef Butler CC, van der Velden AW, Bongard E, et al. Oseltamivir plus usual care versus usual care for influenza-like illness in primary care: an open-label, pragmatic, randomised controlled trial. Lancet. 2020;395:42–52.CrossRef
7.
go back to reference Hayden FG, Sugaya N, Hirotsu N, et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N Engl J Med. 2018;379:913–23.CrossRef Hayden FG, Sugaya N, Hirotsu N, et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N Engl J Med. 2018;379:913–23.CrossRef
9.
go back to reference Head MG, Brown RJ, Newell ML, et al. The allocation of USdollar;105 billion in global funding from G20 countries for infectious disease research between 2000 and 2017: a content analysis of investments. Lancet Glob Health. 2020;8:e1295–304.CrossRef Head MG, Brown RJ, Newell ML, et al. The allocation of USdollar;105 billion in global funding from G20 countries for infectious disease research between 2000 and 2017: a content analysis of investments. Lancet Glob Health. 2020;8:e1295–304.CrossRef
10.
go back to reference Dunning J, Baillie JK, Cao B, et al. Antiviral combinations for severe influenza. Lancet Infect Dis. 2014;14:1259–70.CrossRef Dunning J, Baillie JK, Cao B, et al. Antiviral combinations for severe influenza. Lancet Infect Dis. 2014;14:1259–70.CrossRef
11.
go back to reference Wang C, Cao B, Liu QQ, et al. Oseltamivir compared with the Chinese traditional therapy maxingshigan-yinqiaosan in the treatment of H1N1 influenza: a randomized trial. Ann Intern Med. 2011;155:217–25.CrossRef Wang C, Cao B, Liu QQ, et al. Oseltamivir compared with the Chinese traditional therapy maxingshigan-yinqiaosan in the treatment of H1N1 influenza: a randomized trial. Ann Intern Med. 2011;155:217–25.CrossRef
12.
go back to reference Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv. 2016;2:e1501780.CrossRef Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv. 2016;2:e1501780.CrossRef
13.
go back to reference Liao H, Ye J, Gao L, et al. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomed Pharmacother. 2020;133:110917.CrossRef Liao H, Ye J, Gao L, et al. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomed Pharmacother. 2020;133:110917.CrossRef
14.
go back to reference Ji S, Li R, Wang Q, et al. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J Ethnopharmacol. 2015;176:475–84.CrossRef Ji S, Li R, Wang Q, et al. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J Ethnopharmacol. 2015;176:475–84.CrossRef
15.
go back to reference Shen J, Li P, Liu S, et al. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. J Ethnopharmacol. 2021;265:113198.CrossRef Shen J, Li P, Liu S, et al. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. J Ethnopharmacol. 2021;265:113198.CrossRef
16.
go back to reference Ren J, Wei D, An H, et al. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. J Ethnopharmacol. 2020;263:112869.CrossRef Ren J, Wei D, An H, et al. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. J Ethnopharmacol. 2020;263:112869.CrossRef
17.
go back to reference Sithisarn P, Michaelis M, Schubert-Zsilavecz M, et al. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res. 2013;97:41–8.CrossRef Sithisarn P, Michaelis M, Schubert-Zsilavecz M, et al. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res. 2013;97:41–8.CrossRef
18.
go back to reference Oo A, Teoh BT, Sam SS, et al. Baicalein and baicalin as Zika virus inhibitors. Arch Virol. 2019;164:585–93.CrossRef Oo A, Teoh BT, Sam SS, et al. Baicalein and baicalin as Zika virus inhibitors. Arch Virol. 2019;164:585–93.CrossRef
19.
go back to reference Zhi H, Jin X, Zhu H, et al. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza A virus induced acute lung injury. J Pharm Biomed Anal. 2020;177:112876.CrossRef Zhi H, Jin X, Zhu H, et al. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza A virus induced acute lung injury. J Pharm Biomed Anal. 2020;177:112876.CrossRef
20.
go back to reference Stefan KL, Kim MV, Iwasaki A, et al. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell. 2020;183:1312-1324. e10.CrossRef Stefan KL, Kim MV, Iwasaki A, et al. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell. 2020;183:1312-1324. e10.CrossRef
21.
go back to reference Hagan T, Cortese M, Rouphael N, et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell. 2019;178:1313-1328.e13.CrossRef Hagan T, Cortese M, Rouphael N, et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell. 2019;178:1313-1328.e13.CrossRef
22.
go back to reference Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018;6:9.CrossRef Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018;6:9.CrossRef
23.
go back to reference Jespersen L, Tarnow I, Eskesen D, Morberg CM, Michelsen B, Bügel S, Dragsted LO, Rijkers GT, Calder PC. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Am J Clin Nutr. 2015;101:1188–96.CrossRef Jespersen L, Tarnow I, Eskesen D, Morberg CM, Michelsen B, Bügel S, Dragsted LO, Rijkers GT, Calder PC. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Am J Clin Nutr. 2015;101:1188–96.CrossRef
24.
go back to reference Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T, Yoshikai Y. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int Immunopharmacol. 2009;9:1122–5.CrossRef Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T, Yoshikai Y. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int Immunopharmacol. 2009;9:1122–5.CrossRef
25.
go back to reference Wu R, Murali R, Kabe Y, et al. Baicalein Targets GTPase-Mediated Autophagy to Eliminate Liver Tumor-Initiating Stem Cell-Like Cells Resistant to mTORC1 Inhibition. Hepatology. 2018;68:1726–40.CrossRef Wu R, Murali R, Kabe Y, et al. Baicalein Targets GTPase-Mediated Autophagy to Eliminate Liver Tumor-Initiating Stem Cell-Like Cells Resistant to mTORC1 Inhibition. Hepatology. 2018;68:1726–40.CrossRef
26.
go back to reference Tsou LK, Lara-Tejero M, RoseFigura J, et al. Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates. J Am Chem Soc. 2016;138:2209–18.CrossRef Tsou LK, Lara-Tejero M, RoseFigura J, et al. Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates. J Am Chem Soc. 2016;138:2209–18.CrossRef
27.
go back to reference Li J, Zhou Y, Du G, et al. Integration of transcriptomics and network analysis deciphers the mechanisms of baicalein in improving learning and memory impairment in senescence-accelerated mouse prone 8 (SAMP8). Eur J Pharmacol. 2019;865:172789.CrossRef Li J, Zhou Y, Du G, et al. Integration of transcriptomics and network analysis deciphers the mechanisms of baicalein in improving learning and memory impairment in senescence-accelerated mouse prone 8 (SAMP8). Eur J Pharmacol. 2019;865:172789.CrossRef
28.
go back to reference Tian G, Wu C, Li J, et al. Network pharmacology based investigation into the effect and mechanism of Modified Sijunzi Decoction against the subtypes of chronic atrophic gastritis. Pharmacol Res. 2019;144:158–66.CrossRef Tian G, Wu C, Li J, et al. Network pharmacology based investigation into the effect and mechanism of Modified Sijunzi Decoction against the subtypes of chronic atrophic gastritis. Pharmacol Res. 2019;144:158–66.CrossRef
29.
go back to reference Yang J, Tian S, Zhao J, et al. Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning. Pharmacol Res. 2020;159:105034.CrossRef Yang J, Tian S, Zhao J, et al. Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning. Pharmacol Res. 2020;159:105034.CrossRef
30.
go back to reference Wang X, Wu M, Lai X, et al. Network Pharmacology to Uncover the Biological Basis of Spleen Qi Deficiency Syndrome and Herbal Treatment. Oxid Med Cell Longev. 2020;2020:2974268. Wang X, Wu M, Lai X, et al. Network Pharmacology to Uncover the Biological Basis of Spleen Qi Deficiency Syndrome and Herbal Treatment. Oxid Med Cell Longev. 2020;2020:2974268.
31.
go back to reference Li K, Chen X, Zhong J, et al. The effects of the Xijiao Dihuang decoction combined with Yinqiao powder on miRNA-mRNA profiles in mice infected with influenza a virus. BMC Complement Med Ther. 2020;20:286.CrossRef Li K, Chen X, Zhong J, et al. The effects of the Xijiao Dihuang decoction combined with Yinqiao powder on miRNA-mRNA profiles in mice infected with influenza a virus. BMC Complement Med Ther. 2020;20:286.CrossRef
33.
go back to reference Liu G, Zheng Q, Pan K, et al. Protective effect of Chrysanthemum morifolium Ramat. ethanol extract on lipopolysaccharide induced acute lung injury in mice. BMC Complement Med Ther. 2020;20:235.CrossRef Liu G, Zheng Q, Pan K, et al. Protective effect of Chrysanthemum morifolium Ramat. ethanol extract on lipopolysaccharide induced acute lung injury in mice. BMC Complement Med Ther. 2020;20:235.CrossRef
35.
go back to reference Xu Z, Xie Z, Sun J, et al. Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis. Front Cell Infect Microbiol. 2020;10:160.CrossRef Xu Z, Xie Z, Sun J, et al. Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis. Front Cell Infect Microbiol. 2020;10:160.CrossRef
36.
go back to reference Sun R, Xu K, Ji S, et al. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. Sci Total Environ. 2020;705:135879.CrossRef Sun R, Xu K, Ji S, et al. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. Sci Total Environ. 2020;705:135879.CrossRef
37.
go back to reference Xu J, Bai C, Huang L, et al. Network pharmacology to dissect the mechanisms of Yinlai Decoction for pneumonia. BMC Complement Med Ther. 2020;20:168.CrossRef Xu J, Bai C, Huang L, et al. Network pharmacology to dissect the mechanisms of Yinlai Decoction for pneumonia. BMC Complement Med Ther. 2020;20:168.CrossRef
38.
go back to reference Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CrossRef Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CrossRef
39.
go back to reference Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.CrossRef Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.CrossRef
40.
go back to reference Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51.CrossRef Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51.CrossRef
41.
go back to reference Zhang Y, Lyu C, Fong SYK, et al. Evaluation of potential herb-drug interactions between oseltamivir and commonly used anti-influenza Chinese medicinal herbs. J Ethnopharmacol. 2019;243:112097.CrossRef Zhang Y, Lyu C, Fong SYK, et al. Evaluation of potential herb-drug interactions between oseltamivir and commonly used anti-influenza Chinese medicinal herbs. J Ethnopharmacol. 2019;243:112097.CrossRef
42.
go back to reference Yu X, Li H, Hu P, et al. Natural HDAC-1/8 inhibitor baicalein exerts therapeutic effect in CBF-AML. Clin Transl Med. 2020;10:e154.CrossRef Yu X, Li H, Hu P, et al. Natural HDAC-1/8 inhibitor baicalein exerts therapeutic effect in CBF-AML. Clin Transl Med. 2020;10:e154.CrossRef
43.
go back to reference Li Y, Chen Q, Ran D, et al. Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins, and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med. 2019;134:239–47.CrossRef Li Y, Chen Q, Ran D, et al. Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins, and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med. 2019;134:239–47.CrossRef
44.
go back to reference Cui XY, Wu X, Lu D, et al. Network pharmacology-based strategy for predicting therapy targets of Sanqi and Huangjing in diabetes mellitus. World J Clin Cases. 2022;10:6900–14.CrossRef Cui XY, Wu X, Lu D, et al. Network pharmacology-based strategy for predicting therapy targets of Sanqi and Huangjing in diabetes mellitus. World J Clin Cases. 2022;10:6900–14.CrossRef
45.
go back to reference Sun PY, Wang AS, Zhang ZF, et al. Network pharmacology-based strategy to investigate the active ingredients and molecular mechanisms of Scutellaria Barbata D. Don against radiation pneumonitis. Medicine (Baltimore). 2021;100:e27957.CrossRef Sun PY, Wang AS, Zhang ZF, et al. Network pharmacology-based strategy to investigate the active ingredients and molecular mechanisms of Scutellaria Barbata D. Don against radiation pneumonitis. Medicine (Baltimore). 2021;100:e27957.CrossRef
46.
go back to reference Zhu Y, Yu J, Zhang K, et al. Network Pharmacology Analysis to Explore the Pharmacological Mechanism of Effective Chinese Medicines in Treating Metastatic Colorectal Cancer using Meta-Analysis Approach. Am J Chin Med. 2021;49:1839–70.CrossRef Zhu Y, Yu J, Zhang K, et al. Network Pharmacology Analysis to Explore the Pharmacological Mechanism of Effective Chinese Medicines in Treating Metastatic Colorectal Cancer using Meta-Analysis Approach. Am J Chin Med. 2021;49:1839–70.CrossRef
47.
go back to reference Liu P, Xu H, Shi Y, et al. Potential Molecular Mechanisms of Plantain in the Treatment of Gout and Hyperuricemia Based on Network Pharmacology. Evid Based Complement Alternat Med. 2020;2020:3023127.CrossRef Liu P, Xu H, Shi Y, et al. Potential Molecular Mechanisms of Plantain in the Treatment of Gout and Hyperuricemia Based on Network Pharmacology. Evid Based Complement Alternat Med. 2020;2020:3023127.CrossRef
48.
go back to reference Hanada S, Pirzadeh M, Carver KY, et al. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018;9:2640.CrossRef Hanada S, Pirzadeh M, Carver KY, et al. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol. 2018;9:2640.CrossRef
49.
go back to reference Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357:498–502.CrossRef Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357:498–502.CrossRef
50.
go back to reference Deriu E, Boxx GM, He X, Pan C, Benavidez SD, Cen L, Rozengurt N, Shi W, Cheng G. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLoS Pathog. 2016;12:e1005572.CrossRef Deriu E, Boxx GM, He X, Pan C, Benavidez SD, Cen L, Rozengurt N, Shi W, Cheng G. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLoS Pathog. 2016;12:e1005572.CrossRef
Metadata
Title
Determination of the synergistic anti-influenza effect of Huangqin Su tablet and Oseltamivir and investigation of mechanism of the tablet based on gut microbiota and network pharmacology
Authors
Xuran Cui
Xibao Liu
Feng Wang
Kun Lou
Junping Hong
Hequn Bai
Rongchu Chen
Yang Yang
Qingquan Liu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-03858-4

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue