Skip to main content
Top
Published in:

Open Access 01-12-2023 | Respiratory Microbiota | Research

Gut microbiota combined with fecal metabolomics reveals the effects of FuFang Runzaoling on the microbial and metabolic profiles in NOD mouse model of Sjögren’s syndrome

Authors: Changming Chen, Ping Zeng, Xueming Yao, Zhaowei Huang, Yi Ling, Ying Huang, Lei Hou, Hufan Li, Dan Zhu, Wukai Ma

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Objective

Sjögren’s syndrome (SS) is an inflammatory autoimmune disease characterized by high levels of chronic lymphocyte infiltration. Differences and dysfunction in the gut microbiota and metabolites may be closely related to the pathogenesis of SS. The purpose of this study was to reveal the relationship between the gut microbiota and metabolome in NOD mice as a model of SS and the role of FuFang Runzaoling (FRZ), which is a clinically effective in treating SS.

Methods

NOD mice were gavaged with FRZ for 10 weeks. The ingested volume of drinking water, submandibular gland index, pathologic changes of the submandibular glands, and serum cytokines interleukin (IL)-6, IL-10, IL-17 A, and tumor necrosis factor-alpha (TNF-α) were determined. The roles of FRZ on gut microbiota and fecal metabolites were explored by 16 S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MC), respectively. The correlation between them was determined by Pearson correlation analysis.

Results

Compared with the model group, the drinking water volume of NOD mice treated with FRZ increased and the submandibular gland index decreased. FRZ effectively ameliorated lymphocyte infiltration in the small submandibular glands in mice. Serum levels of IL-6, TNF-α, and IL-17 A decreased, and IL-10 increased. The Firmicutes/Bacteroidetes ratio in the FRZ treatment group was higher. FRZ significantly downregulated the relative abundance of the family Bacteroidaceae and genus Bacteroides, and significantly upregulated the relative abundance of genus Lachnospiraceae_UCG-001. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) revealed the significant change in fecal metabolites after FRZ treatment. Based on criteria of OPLS-DA variable influence on projection > 1, P < 0.05, and fragmentation score > 50, a total of 109 metabolites in the FRZ-H group were differentially regulated (47 downregulated and 62 upregulated) compared to their expressions in the model group. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed enriched metabolic of sphingolipid metabolism, retrograde endocannabinoid signaling, GABAergic synapse, necroptosis, arginine biosynthesis, and metabolism of histidine, alanine, aspartate, and glutamate. Correlation analysis between gut microbiota and fecal metabolites suggested that the enriched bacteria were related to many key metabolites.

Conclusions

Taken together, we found FRZ could reduce the inflammatory responses in NOD mice by regulating the gut microbiota, fecal metabolites, and their correlation to emerge a therapeutic effect on mice with SS. This will lay the foundation for the further studies and applications of FRZ, and the use of gut microbiotas as drug targets to treat SS.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Negrini S, Emmi G, Greco M, Borro M, Sardanelli F, Murdaca G, Indiveri F, Puppo F. Sjögren’s syndrome: a systemic autoimmune disease. Clin Exp Med. 2022;22(1):9–25PubMedCrossRef Negrini S, Emmi G, Greco M, Borro M, Sardanelli F, Murdaca G, Indiveri F, Puppo F. Sjögren’s syndrome: a systemic autoimmune disease. Clin Exp Med. 2022;22(1):9–25PubMedCrossRef
2.
go back to reference Bjordal O, Norheim KB, Rødahl E, Jonsson R, Omdal R. Primary Sjögren’s syndrome and the eye. Surv Ophthalmol. 2020;65(2):119–32PubMedCrossRef Bjordal O, Norheim KB, Rødahl E, Jonsson R, Omdal R. Primary Sjögren’s syndrome and the eye. Surv Ophthalmol. 2020;65(2):119–32PubMedCrossRef
4.
go back to reference Trujillo-Vargas CM, Schaefer L, Alam J, Pflugfelder SC, Britton RA, de Paiva CS. The gut-eye-lacrimal gland-microbiome axis in Sjögren Syndrome. Ocul Surf 2020;18(2):335–44PubMedCrossRef Trujillo-Vargas CM, Schaefer L, Alam J, Pflugfelder SC, Britton RA, de Paiva CS. The gut-eye-lacrimal gland-microbiome axis in Sjögren Syndrome. Ocul Surf 2020;18(2):335–44PubMedCrossRef
5.
go back to reference Zhao L, Dong M, Liao S, Du Y, Zhou Q, Zheng H, Chen M, Ji J, Gao H. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology. Sci Rep. 2016;6:27194PubMedPubMedCentralCrossRef Zhao L, Dong M, Liao S, Du Y, Zhou Q, Zheng H, Chen M, Ji J, Gao H. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology. Sci Rep. 2016;6:27194PubMedPubMedCentralCrossRef
6.
go back to reference Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev. 2019;38(1):22–33PubMedCrossRef Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev. 2019;38(1):22–33PubMedCrossRef
7.
go back to reference Yuan X, Hou L, Zeng P, Ma W. Clinical observation on 30 cases of Sjogren’s syndrome treated by runzaoling decoction. J Guiyang Coll Tradit Chin Med. 2018;40(2):43–5. Yuan X, Hou L, Zeng P, Ma W. Clinical observation on 30 cases of Sjogren’s syndrome treated by runzaoling decoction. J Guiyang Coll Tradit Chin Med. 2018;40(2):43–5.
8.
go back to reference Ma W, Zhong Q, Yao X, Liu Z, Tang F, An Y, Huang Y. Clinical observation on therapeutic effect of Miao traditional medicine Jinwujiangu Decoction on rheumatoid arthritis. Chin J Tradit Chin Med Pharm. 2010;25(12):2190–2. Ma W, Zhong Q, Yao X, Liu Z, Tang F, An Y, Huang Y. Clinical observation on therapeutic effect of Miao traditional medicine Jinwujiangu Decoction on rheumatoid arthritis. Chin J Tradit Chin Med Pharm. 2010;25(12):2190–2.
9.
go back to reference Yuan X, Hou L, Zeng P, Ma W. Observation on therapeutic effect of runzaoling for 30 cases of Sjögren’s syndrome. J Guiyang Univ Chin Med. 2018;40(2):43–5. Yuan X, Hou L, Zeng P, Ma W. Observation on therapeutic effect of runzaoling for 30 cases of Sjögren’s syndrome. J Guiyang Univ Chin Med. 2018;40(2):43–5.
10.
go back to reference Zeng P, Jiang Z, Huang Z, Huang Y, Xu H, Chen C, Ma W. PI3K/AKT/mTOR signaling pathway is downregulated by runzaoling (RZL) in Sjögren’s Syndrome. Mediat Inflamm. 2022;2022:7236118CrossRef Zeng P, Jiang Z, Huang Z, Huang Y, Xu H, Chen C, Ma W. PI3K/AKT/mTOR signaling pathway is downregulated by runzaoling (RZL) in Sjögren’s Syndrome. Mediat Inflamm. 2022;2022:7236118CrossRef
11.
go back to reference Jia E, Liu L, Yao X, Ma W. The influence of runzaoling on AQP1 and AQP5 in submaxillary gland of mice with Sjögren’s syndrome. Int J Trad Chin Med. 2011;33(4):316–8. Jia E, Liu L, Yao X, Ma W. The influence of runzaoling on AQP1 and AQP5 in submaxillary gland of mice with Sjögren’s syndrome. Int J Trad Chin Med. 2011;33(4):316–8.
12.
go back to reference Ma W, Zeng P, He X, Ning Q, Yao X, Zhou J. Hou L. Effects of runzaoling recipe on serum Th1/Th2 in Sjögren’s syndrome model mice. J Tradit Chin Med. 2017;58(4):329–33. Ma W, Zeng P, He X, Ning Q, Yao X, Zhou J. Hou L. Effects of runzaoling recipe on serum Th1/Th2 in Sjögren’s syndrome model mice. J Tradit Chin Med. 2017;58(4):329–33.
13.
go back to reference Hou L, Zeng P, He X, Ning Q, Yao X, Zhou J, Ma W. Effects of Runzaoling on Th17/Treg cells in Sjögren’s syndrome model mice. Pharmacol Clin o Chin Materia Med. 2017;33(2):158–62. Hou L, Zeng P, He X, Ning Q, Yao X, Zhou J, Ma W. Effects of Runzaoling on Th17/Treg cells in Sjögren’s syndrome model mice. Pharmacol Clin o Chin Materia Med. 2017;33(2):158–62.
15.
go back to reference Ramos-Casals M, Brito-Zerón P, Bombardieri S, Bootsma H, De Vita S, Dörner T, Fisher BA, Gottenberg JE, Hernandez-Molina G, Kocher A, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann Rheum Dis. 2020;79(1):3–18PubMedCrossRef Ramos-Casals M, Brito-Zerón P, Bombardieri S, Bootsma H, De Vita S, Dörner T, Fisher BA, Gottenberg JE, Hernandez-Molina G, Kocher A, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann Rheum Dis. 2020;79(1):3–18PubMedCrossRef
16.
go back to reference Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VS, Lau CS, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10PubMedCrossRef Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VS, Lau CS, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10PubMedCrossRef
17.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–d592PubMedCrossRef Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–d592PubMedCrossRef
19.
go back to reference Stefanski AL, Tomiak C, Pleyer U, Dietrich T, Burmester GR, Dörner T. The diagnosis and treatment of Sjögren’s Syndrome. Deutsches Arzteblatt Int. 2017;114(20):354–61. Stefanski AL, Tomiak C, Pleyer U, Dietrich T, Burmester GR, Dörner T. The diagnosis and treatment of Sjögren’s Syndrome. Deutsches Arzteblatt Int. 2017;114(20):354–61.
20.
go back to reference Ramos-Casals M, Brito-Zerón P, Sisó-Almirall A, Bosch X, Tzioufas AG. Topical and systemic medications for the treatment of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2012;8(7):399–411PubMedCrossRef Ramos-Casals M, Brito-Zerón P, Sisó-Almirall A, Bosch X, Tzioufas AG. Topical and systemic medications for the treatment of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2012;8(7):399–411PubMedCrossRef
21.
go back to reference Ma W, Zeng P, He X, Ning Q, Zhou J, Hou L. Study on Chinese medicine Runzaoling to submandibular gland of Sjögren’s syndrome model mice. Chin Archives Traditional Chin Med. 2017;35(11):2912–4. Ma W, Zeng P, He X, Ning Q, Zhou J, Hou L. Study on Chinese medicine Runzaoling to submandibular gland of Sjögren’s syndrome model mice. Chin Archives Traditional Chin Med. 2017;35(11):2912–4.
22.
go back to reference Zhong D, Wu C, Zeng X, Wang Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol. 2018;37(1):25–34PubMedCrossRef Zhong D, Wu C, Zeng X, Wang Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol. 2018;37(1):25–34PubMedCrossRef
23.
go back to reference Tsigalou C, Stavropoulou E, Bezirtzoglou E. Current insights in Microbiome Shifts in Sjogren’s syndrome and possible therapeutic interventions. Front Immunol. 2018;9:1106PubMedPubMedCentralCrossRef Tsigalou C, Stavropoulou E, Bezirtzoglou E. Current insights in Microbiome Shifts in Sjogren’s syndrome and possible therapeutic interventions. Front Immunol. 2018;9:1106PubMedPubMedCentralCrossRef
24.
go back to reference Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, Ríos-Morales M, van Faassen MJR, Loreti MG, de Bruin A, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circul Res. 2019;124(1):94–100CrossRef Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, Ríos-Morales M, van Faassen MJR, Loreti MG, de Bruin A, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circul Res. 2019;124(1):94–100CrossRef
26.
go back to reference de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S, Streckfus CF, Hutchinson DS, Ajami NJ, Petrosino JF, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep. 2016;6:23561PubMedPubMedCentralCrossRef de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S, Streckfus CF, Hutchinson DS, Ajami NJ, Petrosino JF, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep. 2016;6:23561PubMedPubMedCentralCrossRef
27.
go back to reference Mandl T, Marsal J, Olsson P, Ohlsson B, Andréasson K. Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity. Arthritis Res therapy. 2017;19(1):237CrossRef Mandl T, Marsal J, Olsson P, Ohlsson B, Andréasson K. Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity. Arthritis Res therapy. 2017;19(1):237CrossRef
28.
go back to reference Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Milani C, Quirantes-Piné R, Borrás-Linares I, Ventura M, Segura-Carrettero A, et al. Microbial and metabolic multi-omic correlations in systemic sclerosis patients. Ann N Y Acad Sci. 2018;1421(1):97–109PubMedCrossRef Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Milani C, Quirantes-Piné R, Borrás-Linares I, Ventura M, Segura-Carrettero A, et al. Microbial and metabolic multi-omic correlations in systemic sclerosis patients. Ann N Y Acad Sci. 2018;1421(1):97–109PubMedCrossRef
29.
go back to reference Mendez R, Watane A, Farhangi M, Cavuoto KM, Leith T, Budree S, Galor A, Banerjee S. Gut microbial dysbiosis in individuals with Sjögren’s syndrome. Microb Cell Fact. 2020;19(1):90PubMedPubMedCentralCrossRef Mendez R, Watane A, Farhangi M, Cavuoto KM, Leith T, Budree S, Galor A, Banerjee S. Gut microbial dysbiosis in individuals with Sjögren’s syndrome. Microb Cell Fact. 2020;19(1):90PubMedPubMedCentralCrossRef
30.
go back to reference de Souza TR, de Albuquerque Tavares Carvalho A, Duarte ÂP, Porter SR, Leão JC, Gueiros LA. Th1 and Th2 polymorphisms in Sjögren’s syndrome and rheumatoid arthritis. J oral Pathol Med: Public Int Assoc Oral Pathol Am Acad Oral Pathol. 2014;43(6):418–26CrossRef de Souza TR, de Albuquerque Tavares Carvalho A, Duarte ÂP, Porter SR, Leão JC, Gueiros LA. Th1 and Th2 polymorphisms in Sjögren’s syndrome and rheumatoid arthritis. J oral Pathol Med: Public Int Assoc Oral Pathol Am Acad Oral Pathol. 2014;43(6):418–26CrossRef
31.
go back to reference Saraiva M, Vieira P, O’Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):e20190418PubMedCrossRef Saraiva M, Vieira P, O’Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):e20190418PubMedCrossRef
32.
go back to reference Qi J, Li D, Shi G, Zhang X, Pan Y, Dou H, Wang T, Yao G, Hou Y. Interleukin–12 exacerbates Sjögren’s syndrome through induction of myeloid–derived suppressor cells. Mol Med Rep. 2019;20(2):1131–8PubMedPubMedCentral Qi J, Li D, Shi G, Zhang X, Pan Y, Dou H, Wang T, Yao G, Hou Y. Interleukin–12 exacerbates Sjögren’s syndrome through induction of myeloid–derived suppressor cells. Mol Med Rep. 2019;20(2):1131–8PubMedPubMedCentral
33.
go back to reference Kim DS, Woo JS, Min HK, Choi JW, Moon JH, Park MJ, Kwok SK, Park SH, Cho ML. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome. J Autoimmun. 2021;119:102611PubMedCrossRef Kim DS, Woo JS, Min HK, Choi JW, Moon JH, Park MJ, Kwok SK, Park SH, Cho ML. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome. J Autoimmun. 2021;119:102611PubMedCrossRef
34.
go back to reference Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, Laufer TM, Ignatowicz L. Ivanov, II: segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 2014;40(4):594–607PubMedPubMedCentralCrossRef Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, Laufer TM, Ignatowicz L. Ivanov, II: segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 2014;40(4):594–607PubMedPubMedCentralCrossRef
35.
go back to reference De Paiva CS, Chotikavanich S, Pangelinan SB, Pitcher JD 3rd, Fang B, Zheng X, Ma P, Farley WJ, Siemasko KF, Niederkorn JY, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2(3):243–53PubMedPubMedCentralCrossRef De Paiva CS, Chotikavanich S, Pangelinan SB, Pitcher JD 3rd, Fang B, Zheng X, Ma P, Farley WJ, Siemasko KF, Niederkorn JY, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2(3):243–53PubMedPubMedCentralCrossRef
36.
go back to reference Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, Turroni F, González S, Suárez A, Gueimonde M, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio. 2014;5(5):e01548–01514PubMedPubMedCentralCrossRef Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, Turroni F, González S, Suárez A, Gueimonde M, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio. 2014;5(5):e01548–01514PubMedPubMedCentralCrossRef
37.
go back to reference Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905PubMedCrossRef Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905PubMedCrossRef
38.
go back to reference Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6(3):703–13PubMedPubMedCentralCrossRef Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6(3):703–13PubMedPubMedCentralCrossRef
39.
go back to reference Huang G, Zhang S, Zhou C, Tang X, Li C, Wang C, Tang X, Suo J, Jia Y, El-Ashram S, et al. Influence of Eimeria falciformis infection on gut microbiota and metabolic pathways in mice. Infect Immun. 2018;86(5):e00073PubMedPubMedCentralCrossRef Huang G, Zhang S, Zhou C, Tang X, Li C, Wang C, Tang X, Suo J, Jia Y, El-Ashram S, et al. Influence of Eimeria falciformis infection on gut microbiota and metabolic pathways in mice. Infect Immun. 2018;86(5):e00073PubMedPubMedCentralCrossRef
40.
go back to reference Ceccarani C, Bassanini G, Montanari C, Casiraghi MC, Ottaviano E, Morace G, Biasucci G, Paci S, Borghi E, Verduci E. Proteobacteria overgrowth and butyrate-producing taxa depletion in the gut microbiota of glycogen storage disease type 1 patients. Metabolites. 2020;10(4):133PubMedPubMedCentralCrossRef Ceccarani C, Bassanini G, Montanari C, Casiraghi MC, Ottaviano E, Morace G, Biasucci G, Paci S, Borghi E, Verduci E. Proteobacteria overgrowth and butyrate-producing taxa depletion in the gut microbiota of glycogen storage disease type 1 patients. Metabolites. 2020;10(4):133PubMedPubMedCentralCrossRef
41.
go back to reference Yang M, Gu Y, Li L, Liu T, Song X, Sun Y, Cao X, Wang B, Jiang K, Cao H. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients. 2021;13(9):3143.PubMedPubMedCentralCrossRef Yang M, Gu Y, Li L, Liu T, Song X, Sun Y, Cao X, Wang B, Jiang K, Cao H. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients. 2021;13(9):3143.PubMedPubMedCentralCrossRef
43.
go back to reference Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50PubMedCrossRef Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50PubMedCrossRef
45.
go back to reference Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discovery. 2010;9(11):883–97PubMedCrossRef Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discovery. 2010;9(11):883–97PubMedCrossRef
46.
go back to reference Zhang MM, Jiang YS, Lv HC, Mu HB, Li J, Shang ZW, Zhang RJ. Pathway-based association analysis of two genome-wide screening data identifies rheumatoid arthritis-related pathways. Genes Immun. 2014;15(7):487–94PubMedCrossRef Zhang MM, Jiang YS, Lv HC, Mu HB, Li J, Shang ZW, Zhang RJ. Pathway-based association analysis of two genome-wide screening data identifies rheumatoid arthritis-related pathways. Genes Immun. 2014;15(7):487–94PubMedCrossRef
47.
go back to reference Zheng Z, Zhang X, Liu J, He P, Zhang S, Zhang Y, Gao J, Yang S, Kang N, Afridi MI, et al. GABAergic synapses suppress intestinal innate immunity via insulin signaling in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2021;118(20):e2021063118PubMedPubMedCentralCrossRef Zheng Z, Zhang X, Liu J, He P, Zhang S, Zhang Y, Gao J, Yang S, Kang N, Afridi MI, et al. GABAergic synapses suppress intestinal innate immunity via insulin signaling in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2021;118(20):e2021063118PubMedPubMedCentralCrossRef
48.
go back to reference Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis. Front Immunol. 2021;12:809806PubMedPubMedCentralCrossRef Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis. Front Immunol. 2021;12:809806PubMedPubMedCentralCrossRef
49.
go back to reference Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23PubMedPubMedCentralCrossRef Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23PubMedPubMedCentralCrossRef
50.
go back to reference Nascimento MM, Alvarez AJ, Huang X, Browngardt C, Jenkins R, Sinhoreti MC, Ribeiro APD, Dilbone DA, Richards VP, Garrett TJ, et al. Metabolic profile of Supragingival plaque exposed to arginine and fluoride. J Dent Res. 2019;98(11):1245–52PubMedPubMedCentralCrossRef Nascimento MM, Alvarez AJ, Huang X, Browngardt C, Jenkins R, Sinhoreti MC, Ribeiro APD, Dilbone DA, Richards VP, Garrett TJ, et al. Metabolic profile of Supragingival plaque exposed to arginine and fluoride. J Dent Res. 2019;98(11):1245–52PubMedPubMedCentralCrossRef
52.
go back to reference Uemura T, Suzuki T, Saiki R, Dohmae N, Ito S, Takahashi H, Toida T, Kashiwagi K, Igarashi K. Activation of MMP-9 activity by acrolein in saliva from patients with primary Sjögren’s syndrome and its mechanism. Int J Biochem Cell Biol. 2017;88:84–91PubMedCrossRef Uemura T, Suzuki T, Saiki R, Dohmae N, Ito S, Takahashi H, Toida T, Kashiwagi K, Igarashi K. Activation of MMP-9 activity by acrolein in saliva from patients with primary Sjögren’s syndrome and its mechanism. Int J Biochem Cell Biol. 2017;88:84–91PubMedCrossRef
53.
go back to reference Xu T, Guo Y, Lu J, Shan J, Lin L, Qian W, Chen W, Wang J, Lv X, Ke M, et al. Untargeted serum metabolomics and potential biomarkers for Sjögren’s syndrome. Clin Exp Rheumatol. 2021;39(Suppl 133):23–9PubMedCrossRef Xu T, Guo Y, Lu J, Shan J, Lin L, Qian W, Chen W, Wang J, Lv X, Ke M, et al. Untargeted serum metabolomics and potential biomarkers for Sjögren’s syndrome. Clin Exp Rheumatol. 2021;39(Suppl 133):23–9PubMedCrossRef
Metadata
Title
Gut microbiota combined with fecal metabolomics reveals the effects of FuFang Runzaoling on the microbial and metabolic profiles in NOD mouse model of Sjögren’s syndrome
Authors
Changming Chen
Ping Zeng
Xueming Yao
Zhaowei Huang
Yi Ling
Ying Huang
Lei Hou
Hufan Li
Dan Zhu
Wukai Ma
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04017-5

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue