Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2018

Open Access 01-12-2018 | Research

Oscillatory motor patterning is impaired in neurofibromatosis type 1: a behavioural, EEG and fMRI study

Authors: Gilberto Silva, Isabel Catarina Duarte, Inês Bernardino, Tânia Marques, Inês R. Violante, Miguel Castelo-Branco

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2018

Login to get access

Abstract

Background

Neurofibromatosis type1 (NF1) is associated with a broad range of behavioural deficits, and an imbalance between excitatory and inhibitory neurotransmission has been postulated in this disorder. Inhibition is involved in the control of frequency and stability of motor rhythms. Therefore, we aimed to explore the link between behavioural motor control, brain rhythms and brain activity, as assessed by EEG and fMRI in NF1.

Methods

We studied a cohort of 21 participants with NF1 and 20 age- and gender-matched healthy controls, with a finger-tapping task requiring pacing at distinct frequencies during EEG and fMRI scans.

Results

We found that task performance was significantly different between NF1 and controls, the latter showing higher tapping time precision. The time-frequency patterns at the beta sub-band (20–26 Hz) mirrored the behavioural modulations, with similar cyclic synchronization/desynchronization patterns for both groups. fMRI results showed a higher recruitment of the extrapyramidal motor system (putamen, cerebellum and red nucleus) in the control group during the fastest pacing condition.

Conclusions

The present study demonstrated impaired precision in rhythmic pacing behaviour in NF1 as compared with controls. We found a decreased recruitment of the cerebellum, a structure where inhibitory interneurons are essential regulators of rhythmic synchronization, and in deep brain regions pivotally involved in motor pacing. Our findings shed light into the neural underpinnings of motor timing deficits in NF1.
Literature
1.
go back to reference Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123:124–33.CrossRefPubMed Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123:124–33.CrossRefPubMed
2.
go back to reference Kayl AE, Moore BD. Behavioral phenotype of neurofibromatosis, type 1. Ment Retard Dev Disabil Res Rev. 2000;6:117–24.CrossRefPubMed Kayl AE, Moore BD. Behavioral phenotype of neurofibromatosis, type 1. Ment Retard Dev Disabil Res Rev. 2000;6:117–24.CrossRefPubMed
4.
go back to reference Lee DY, Yeh T, Emnett RJ, White CR, Gutmann DH. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev. 2010;24:2317–29.CrossRefPubMedPubMedCentral Lee DY, Yeh T, Emnett RJ, White CR, Gutmann DH. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev. 2010;24:2317–29.CrossRefPubMedPubMedCentral
6.
go back to reference Moore BD, Slopis JM, Jackson EF, De Winter AE, Leeds NE. Brain volume in children with neurofibromatosis type 1 relation to neuropsychological status. Neurology. 2000;54:914–20.CrossRefPubMed Moore BD, Slopis JM, Jackson EF, De Winter AE, Leeds NE. Brain volume in children with neurofibromatosis type 1 relation to neuropsychological status. Neurology. 2000;54:914–20.CrossRefPubMed
7.
go back to reference Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-branco M. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1. Hum Brain Mapp. 2014;35:89–106.CrossRefPubMed Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-branco M. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1. Hum Brain Mapp. 2014;35:89–106.CrossRefPubMed
8.
go back to reference Filippi CG, Watts R, Duy LAN, Cauley KA. Diffusion-tensor imaging derived metrics of the corpus callosum in children with neurofibromatosis type I. AJR Am J Roentgenol. 2013;200:44–9.CrossRefPubMed Filippi CG, Watts R, Duy LAN, Cauley KA. Diffusion-tensor imaging derived metrics of the corpus callosum in children with neurofibromatosis type I. AJR Am J Roentgenol. 2013;200:44–9.CrossRefPubMed
10.
go back to reference Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.CrossRefPubMed Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65:1037–44.CrossRefPubMed
11.
go back to reference Silva G, Ribeiro MJ, Costa GN, Violante IR, Ramos F, Saraiva J, et al. Peripheral attentional targets under covert attention lead to paradoxically enhanced alpha desynchronization in neurofibromatosis type 1. PLoS One. 2016;11:e0148600.CrossRefPubMedPubMedCentral Silva G, Ribeiro MJ, Costa GN, Violante IR, Ramos F, Saraiva J, et al. Peripheral attentional targets under covert attention lead to paradoxically enhanced alpha desynchronization in neurofibromatosis type 1. PLoS One. 2016;11:e0148600.CrossRefPubMedPubMedCentral
15.
go back to reference Rietman AB, Oostenbrink R, Bongers S, Gaukema E, Van Abeelen S, Hendriksen JG, et al. Motor problems in children with neurofibromatosis type 1. J Neurodev Disord. 2017;9:1–10.CrossRef Rietman AB, Oostenbrink R, Bongers S, Gaukema E, Van Abeelen S, Hendriksen JG, et al. Motor problems in children with neurofibromatosis type 1. J Neurodev Disord. 2017;9:1–10.CrossRef
16.
go back to reference Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, et al. Mechanism for the learning deficits in a mouse model of neurobromatosis type 1. Nature. 2002;415:526–30.CrossRefPubMed Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, et al. Mechanism for the learning deficits in a mouse model of neurobromatosis type 1. Nature. 2002;415:526–30.CrossRefPubMed
17.
go back to reference Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, et al. Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci USA. 2010;107:13141–6.CrossRefPubMedPubMedCentral Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, et al. Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci USA. 2010;107:13141–6.CrossRefPubMedPubMedCentral
18.
go back to reference Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, David H, et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008;135:549–60.CrossRefPubMedPubMedCentral Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, David H, et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008;135:549–60.CrossRefPubMedPubMedCentral
20.
go back to reference Violante IR, Ribeiro MJ, Edden RAE, Guimarães P, Bernardino I, Rebola J, et al. GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype–phenotype correlations and functional impact. Brain. 2013;136:918–25.CrossRefPubMed Violante IR, Ribeiro MJ, Edden RAE, Guimarães P, Bernardino I, Rebola J, et al. GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype–phenotype correlations and functional impact. Brain. 2013;136:918–25.CrossRefPubMed
21.
go back to reference Ribeiro MJ, Violante IR, Bernardino I, Edden RAE, Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex. 2015;64:194–208.CrossRefPubMed Ribeiro MJ, Violante IR, Bernardino I, Edden RAE, Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex. 2015;64:194–208.CrossRefPubMed
22.
go back to reference Gonçalves J, Violante IR, Sereno J, Leitão RA, Cai Y, Abrunhosa A, et al. Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes. Mol Autism. 2017;8:1–8.CrossRef Gonçalves J, Violante IR, Sereno J, Leitão RA, Cai Y, Abrunhosa A, et al. Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes. Mol Autism. 2017;8:1–8.CrossRef
23.
go back to reference Marder E, Bucher D. Central pattern generators and the control of rythmic movements. Curr Biol. 2001;11:R986–96.CrossRefPubMed Marder E, Bucher D. Central pattern generators and the control of rythmic movements. Curr Biol. 2001;11:R986–96.CrossRefPubMed
24.
go back to reference Nishimaru H, Kakizaki M. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Acta Psychol. 2009;197:83–97. Nishimaru H, Kakizaki M. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Acta Psychol. 2009;197:83–97.
25.
go back to reference Cinelli E, Mutolo D, Robertson B, Grillner S, Contini M, Pantaleo T, et al. GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. J Physiol. 2014;592:1823–38.CrossRefPubMedPubMedCentral Cinelli E, Mutolo D, Robertson B, Grillner S, Contini M, Pantaleo T, et al. GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. J Physiol. 2014;592:1823–38.CrossRefPubMedPubMedCentral
26.
go back to reference Duarte JV, Faustino R, Cunha G, Ferreira C, Janu C. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3. Hum Brain Mapp. 2016;37:3656–68.CrossRefPubMed Duarte JV, Faustino R, Cunha G, Ferreira C, Janu C. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3. Hum Brain Mapp. 2016;37:3656–68.CrossRefPubMed
28.
go back to reference Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: sources and modeling. NeuroImage. 2005;26:347–55.CrossRefPubMed Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: sources and modeling. NeuroImage. 2005;26:347–55.CrossRefPubMed
29.
go back to reference Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed
30.
go back to reference Rocha AM, Ferreira C, Barreto H, Moreira AR, Wechsler D. Manual for intelligence scale for adults - third edition (WAIS-III) - [Portuguese adaptation]. Lisbon: Cegoc-Tea; 2008. Rocha AM, Ferreira C, Barreto H, Moreira AR, Wechsler D. Manual for intelligence scale for adults - third edition (WAIS-III) - [Portuguese adaptation]. Lisbon: Cegoc-Tea; 2008.
31.
go back to reference Golden CJ. A manual for the clinical and experimental use of the Stroop color and word test. Chicago: Stoelting Co.; 1978. Golden CJ. A manual for the clinical and experimental use of the Stroop color and word test. Chicago: Stoelting Co.; 1978.
33.
go back to reference Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10:437–42.CrossRefPubMed Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10:437–42.CrossRefPubMed
34.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.CrossRefPubMed Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.CrossRefPubMed
35.
go back to reference Castelhano J, Rebola J, Leitão B, Rodriguez E, Castelo-Branco M. To perceive or not perceive: the role of gamma-band activity in signaling object percepts. PLoS One. 2013;8:e66363.CrossRefPubMedPubMedCentral Castelhano J, Rebola J, Leitão B, Rodriguez E, Castelo-Branco M. To perceive or not perceive: the role of gamma-band activity in signaling object percepts. PLoS One. 2013;8:e66363.CrossRefPubMedPubMedCentral
36.
go back to reference Castelhano J, Duarte IC, Wibral M, Rodriguez E, Castelo-Branco M. The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI. Hum Brain Mapp. 2014;35:5219–35.CrossRefPubMed Castelhano J, Duarte IC, Wibral M, Rodriguez E, Castelo-Branco M. The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI. Hum Brain Mapp. 2014;35:5219–35.CrossRefPubMed
37.
go back to reference Bernardino I, Castelhano J, Farivar R, Silva ED, Castelo-Branco M. Neural correlates of visual integration in Williams syndrome: gamma oscillation patterns in a model of impaired coherence. Neuropsychologia. 2013;51:1287–95.CrossRefPubMed Bernardino I, Castelhano J, Farivar R, Silva ED, Castelo-Branco M. Neural correlates of visual integration in Williams syndrome: gamma oscillation patterns in a model of impaired coherence. Neuropsychologia. 2013;51:1287–95.CrossRefPubMed
38.
go back to reference Rowbotham I, Cate IMP, Sonuga-Barke EJS, Huijbregts SCJ. Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology. 2009;23:50–60.CrossRefPubMed Rowbotham I, Cate IMP, Sonuga-Barke EJS, Huijbregts SCJ. Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology. 2009;23:50–60.CrossRefPubMed
39.
go back to reference Levine TM, Materek A, Abel J, Donnell MO, Cutting LE. Cognitive profile of neurofibromatosis type 1. Pediatr Neurol. 2006;13:8–20.CrossRef Levine TM, Materek A, Abel J, Donnell MO, Cutting LE. Cognitive profile of neurofibromatosis type 1. Pediatr Neurol. 2006;13:8–20.CrossRef
41.
go back to reference Huijbregts S, Swaab H, De Sonneville L. Cognitive and motor control in neurofibromatosis type I: influence of maturation and hyperactivity-inattention. Dev Neuropsychol. 2010;35:737–51.CrossRefPubMed Huijbregts S, Swaab H, De Sonneville L. Cognitive and motor control in neurofibromatosis type I: influence of maturation and hyperactivity-inattention. Dev Neuropsychol. 2010;35:737–51.CrossRefPubMed
43.
go back to reference Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. 2000;38:315–36.CrossRefPubMed Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. 2000;38:315–36.CrossRefPubMed
44.
go back to reference Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerbellum. 2007;6:18–23.CrossRef Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerbellum. 2007;6:18–23.CrossRef
45.
go back to reference DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Neurol Rev. 2007;64:20–4. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Neurol Rev. 2007;64:20–4.
46.
go back to reference Lehéricy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16:149–61.CrossRefPubMed Lehéricy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16:149–61.CrossRefPubMed
47.
go back to reference Nioche C, Cabanis EA, Habas C. Functional connectivity of the human red nucleus in the brain resting state at 3T. Am J Neuroradiol. 2009;30:396–403.CrossRefPubMed Nioche C, Cabanis EA, Habas C. Functional connectivity of the human red nucleus in the brain resting state at 3T. Am J Neuroradiol. 2009;30:396–403.CrossRefPubMed
48.
49.
go back to reference Wulff P, Schonewille M, Renzi M, Viltono L, Sassoe M, Badura A, et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci. 2009;12:1042–52.CrossRefPubMedPubMedCentral Wulff P, Schonewille M, Renzi M, Viltono L, Sassoe M, Badura A, et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci. 2009;12:1042–52.CrossRefPubMedPubMedCentral
50.
go back to reference Badre D. Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends Cogn Sci. 2008;12:193–200.CrossRefPubMed Badre D. Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends Cogn Sci. 2008;12:193–200.CrossRefPubMed
51.
go back to reference Rae XCL, Hughes LE, Anderson MC, Rowe XB. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J Neurosci. 2015;35:786–94.CrossRefPubMedPubMedCentral Rae XCL, Hughes LE, Anderson MC, Rowe XB. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J Neurosci. 2015;35:786–94.CrossRefPubMedPubMedCentral
Metadata
Title
Oscillatory motor patterning is impaired in neurofibromatosis type 1: a behavioural, EEG and fMRI study
Authors
Gilberto Silva
Isabel Catarina Duarte
Inês Bernardino
Tânia Marques
Inês R. Violante
Miguel Castelo-Branco
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2018
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-018-9230-4

Other articles of this Issue 1/2018

Journal of Neurodevelopmental Disorders 1/2018 Go to the issue