Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2013

Open Access 01-12-2013 | Research

Gyrification, cortical and subcortical morphometry in neurofibromatosis type 1: an uneven profile of developmental abnormalities

Authors: Inês R Violante, Maria J Ribeiro, Eduardo D Silva, Miguel Castelo-Branco

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2013

Login to get access

Abstract

Background

Neurofibromatosis type 1 (NF1) is a monogenic disorder associated with cognitive impairments. In order to understand how mutations in the NF1 gene impact brain structure it is essential to characterize in detail the brain structural abnormalities in patients with NF1. Previous studies have reported contradictory findings and have focused only on volumetric measurements. Here, we investigated the volumes of subcortical structures and the composite dimensions of the cortex through analysis of cortical volume, cortical thickness, cortical surface area and gyrification.

Methods

We studied 14 children with NF1 and 14 typically developing children matched for age, gender, IQ and right/left-handedness. Regional subcortical volumes and cortical gyral measurements were obtained using the FreeSurfer software. Between-group differences were evaluated while controlling for the increase in total intracranial volume observed in NF1.

Results

Subcortical analysis revealed disproportionately larger thalami, right caudate and middle corpus callosum in patients with NF1. Cortical analyses on volume, thickness and surface area were however not indicative of significant alterations in patients. Interestingly, patients with NF1 had significantly lower gyrification indices than typically developing children primarily in the frontal and temporal lobes, but also affecting the insula, cingulate cortex, parietal and occipital regions.

Conclusions

The neuroanatomic abnormalities observed were localized to specific brain regions, indicating that particular areas might constitute selective targets for NF1 gene mutations. Furthermore, the lower gyrification indices were accompanied by a disproportionate increase in brain size without the corresponding increase in folding in patients with NF1. Taken together these findings suggest that specific neurodevelopmental processes, such as gyrification, are more vulnerable to NF1 dysfunction than others. The identified changes in brain organization are consistent with the patterns of cognitive dysfunction in the NF1 phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rakic P, Kornack DR: The Development and Evolutionary Expansion of the Cerebral Cortex in Primates. Evolution of Nervous Systems. Edited by: Kaas JH. 2007, Oxford: Academic Press, 243-259.CrossRef Rakic P, Kornack DR: The Development and Evolutionary Expansion of the Cerebral Cortex in Primates. Evolution of Nervous Systems. Edited by: Kaas JH. 2007, Oxford: Academic Press, 243-259.CrossRef
2.
go back to reference Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW: Genetic influences on brain structure. Nat Neurosci. 2001, 4: 1253-1258. 10.1038/nn758.CrossRefPubMed Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW: Genetic influences on brain structure. Nat Neurosci. 2001, 4: 1253-1258. 10.1038/nn758.CrossRefPubMed
3.
go back to reference Kayl AE, Moore BD: Behavioral phenotype of neurofibromatosis, type 1. Ment Retard Dev Disabil Res Rev. 2000, 6: 117-124. 10.1002/1098-2779(2000)6:2<117::AID-MRDD5>3.0.CO;2-X.CrossRefPubMed Kayl AE, Moore BD: Behavioral phenotype of neurofibromatosis, type 1. Ment Retard Dev Disabil Res Rev. 2000, 6: 117-124. 10.1002/1098-2779(2000)6:2<117::AID-MRDD5>3.0.CO;2-X.CrossRefPubMed
4.
go back to reference Hyman SL, Shores A, North KN: The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005, 65: 1037-1044. 10.1212/01.wnl.0000179303.72345.ce.CrossRefPubMed Hyman SL, Shores A, North KN: The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005, 65: 1037-1044. 10.1212/01.wnl.0000179303.72345.ce.CrossRefPubMed
5.
go back to reference Ferner RE: Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol. 2007, 6: 340-351. 10.1016/S1474-4422(07)70075-3.CrossRefPubMed Ferner RE: Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol. 2007, 6: 340-351. 10.1016/S1474-4422(07)70075-3.CrossRefPubMed
6.
go back to reference Daston MM, Ratner N: Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn. 1992, 195: 216-226. 10.1002/aja.1001950307.CrossRefPubMed Daston MM, Ratner N: Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn. 1992, 195: 216-226. 10.1002/aja.1001950307.CrossRefPubMed
7.
go back to reference Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005, 8: 119-130. 10.1016/j.ccr.2005.07.004.PubMedCentralCrossRefPubMed Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005, 8: 119-130. 10.1016/j.ccr.2005.07.004.PubMedCentralCrossRefPubMed
8.
go back to reference Lush ME, Li Y, Kwon CH, Chen J, Parada LF: Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J Neurosci. 2008, 28: 1580-1587. 10.1523/JNEUROSCI.5236-07.2008.PubMedCentralCrossRefPubMed Lush ME, Li Y, Kwon CH, Chen J, Parada LF: Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J Neurosci. 2008, 28: 1580-1587. 10.1523/JNEUROSCI.5236-07.2008.PubMedCentralCrossRefPubMed
9.
go back to reference Hegedus B, Dasgupta B, Shin JE, Emnett RJ, Hart-Mahon EK, Elghazi L, Bernal-Mizrachi E, Gutmann DH: Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell. 2007, 1: 443-457. 10.1016/j.stem.2007.07.008.CrossRefPubMed Hegedus B, Dasgupta B, Shin JE, Emnett RJ, Hart-Mahon EK, Elghazi L, Bernal-Mizrachi E, Gutmann DH: Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell. 2007, 1: 443-457. 10.1016/j.stem.2007.07.008.CrossRefPubMed
10.
go back to reference Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, Kikuchi A, Hattori S, Kuratsu J, Saya H, Araki N: Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem. 2003, 278: 26958-26969. 10.1074/jbc.M209413200.CrossRefPubMed Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, Kikuchi A, Hattori S, Kuratsu J, Saya H, Araki N: Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem. 2003, 278: 26958-26969. 10.1074/jbc.M209413200.CrossRefPubMed
11.
go back to reference Fernandez-Medarde A, Santos E: The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta. 2011, 1815: 170-188.PubMed Fernandez-Medarde A, Santos E: The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta. 2011, 1815: 170-188.PubMed
12.
go back to reference Payne JM, Moharir MD, Webster R, North KN: Brain structure and function in neurofibromatosis type 1: current concepts and future directions. J Neurol Neurosurg Psychiatry. 2010, 81: 304-309. 10.1136/jnnp.2009.179630.CrossRefPubMed Payne JM, Moharir MD, Webster R, North KN: Brain structure and function in neurofibromatosis type 1: current concepts and future directions. J Neurol Neurosurg Psychiatry. 2010, 81: 304-309. 10.1136/jnnp.2009.179630.CrossRefPubMed
13.
go back to reference Said SM, Yeh TL, Greenwood RS, Whitt JK, Tupler LA, Krishnan KR: MRI morphometric analysis and neuropsychological function in patients with neurofibromatosis. Neuroreport. 1996, 7: 1941-1944. 10.1097/00001756-199608120-00015.CrossRefPubMed Said SM, Yeh TL, Greenwood RS, Whitt JK, Tupler LA, Krishnan KR: MRI morphometric analysis and neuropsychological function in patients with neurofibromatosis. Neuroreport. 1996, 7: 1941-1944. 10.1097/00001756-199608120-00015.CrossRefPubMed
14.
go back to reference Steen RG, Taylor JS, Langston JW, Glass JO, Brewer VR, Reddick WE, Mages R, Pivnick EK: Prospective evaluation of the brain in asymptomatic children with neurofibromatosis type 1: relationship of macrocephaly to T1 relaxation changes and structural brain abnormalities. AJNR Am J Neuroradiol. 2001, 22: 810-817.PubMed Steen RG, Taylor JS, Langston JW, Glass JO, Brewer VR, Reddick WE, Mages R, Pivnick EK: Prospective evaluation of the brain in asymptomatic children with neurofibromatosis type 1: relationship of macrocephaly to T1 relaxation changes and structural brain abnormalities. AJNR Am J Neuroradiol. 2001, 22: 810-817.PubMed
15.
go back to reference Cutting LE, Huang GH, Zeger S, Koth CW, Thompson RE, Denckl MB: Growth curve analyses of neuropsychological profiles in children with neurofibromatosis type 1: specific cognitive tests remain "spared" and "impaired" over time. J Int Neuropsychol Soc. 2002, 8: 838-846. 10.1017/S135561770286012X.CrossRefPubMed Cutting LE, Huang GH, Zeger S, Koth CW, Thompson RE, Denckl MB: Growth curve analyses of neuropsychological profiles in children with neurofibromatosis type 1: specific cognitive tests remain "spared" and "impaired" over time. J Int Neuropsychol Soc. 2002, 8: 838-846. 10.1017/S135561770286012X.CrossRefPubMed
16.
go back to reference Greenwood RS, Tupler LA, Whitt JK, Buu A, Dombeck CB, Harp AG, Payne ME, Eastwood JD, Krishnan KR, MacFall JR: Brain morphometry, T2-weighted hyperintensities, and IQ in children with neurofibromatosis type 1. Arch Neurol. 2005, 62: 1904-1908. 10.1001/archneur.62.12.1904.CrossRefPubMed Greenwood RS, Tupler LA, Whitt JK, Buu A, Dombeck CB, Harp AG, Payne ME, Eastwood JD, Krishnan KR, MacFall JR: Brain morphometry, T2-weighted hyperintensities, and IQ in children with neurofibromatosis type 1. Arch Neurol. 2005, 62: 1904-1908. 10.1001/archneur.62.12.1904.CrossRefPubMed
17.
go back to reference Moore BD, Slopis JM, Jackson EF, De Winter AE, Leeds NE: Brain volume in children with neurofibromatosis type 1: relation to neuropsychological status. Neurology. 2000, 54: 914-920. 10.1212/WNL.54.4.914.CrossRefPubMed Moore BD, Slopis JM, Jackson EF, De Winter AE, Leeds NE: Brain volume in children with neurofibromatosis type 1: relation to neuropsychological status. Neurology. 2000, 54: 914-920. 10.1212/WNL.54.4.914.CrossRefPubMed
18.
go back to reference DiMario FJ, Ramsby GR, Burleson JA: Brain morphometric analysis in neurofibromatosis 1. Arch Neurol. 1999, 56: 1343-1346. 10.1001/archneur.56.11.1343.CrossRefPubMed DiMario FJ, Ramsby GR, Burleson JA: Brain morphometric analysis in neurofibromatosis 1. Arch Neurol. 1999, 56: 1343-1346. 10.1001/archneur.56.11.1343.CrossRefPubMed
19.
go back to reference Billingsley RL, Schrimsher GW, Jackson EF, Slopis JM, Moore BD: Significance of planum temporale and planum parietale morphologic features in neurofibromatosis type 1. Arch Neurol. 2002, 59: 616-622. 10.1001/archneur.59.4.616.CrossRefPubMed Billingsley RL, Schrimsher GW, Jackson EF, Slopis JM, Moore BD: Significance of planum temporale and planum parietale morphologic features in neurofibromatosis type 1. Arch Neurol. 2002, 59: 616-622. 10.1001/archneur.59.4.616.CrossRefPubMed
20.
go back to reference Kaplan AM, Chen K, Lawson MA, Wodrich DL, Bonstelle CT, Reiman EM: Positron emission tomography in children with neurofibromatosis-1. J Child Neurol. 1997, 12: 499-506. 10.1177/088307389701200807.CrossRefPubMed Kaplan AM, Chen K, Lawson MA, Wodrich DL, Bonstelle CT, Reiman EM: Positron emission tomography in children with neurofibromatosis-1. J Child Neurol. 1997, 12: 499-506. 10.1177/088307389701200807.CrossRefPubMed
21.
go back to reference Wang PY, Kaufmann WE, Koth CW, Denckla MB, Barker PB: Thalamic involvement in neurofibromatosis type 1: evaluation with proton magnetic resonance spectroscopic imaging. Ann Neurol. 2000, 47: 477-484. 10.1002/1531-8249(200004)47:4<477::AID-ANA11>3.0.CO;2-C.CrossRefPubMed Wang PY, Kaufmann WE, Koth CW, Denckla MB, Barker PB: Thalamic involvement in neurofibromatosis type 1: evaluation with proton magnetic resonance spectroscopic imaging. Ann Neurol. 2000, 47: 477-484. 10.1002/1531-8249(200004)47:4<477::AID-ANA11>3.0.CO;2-C.CrossRefPubMed
22.
go back to reference Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-Branco M: Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1. Hum Brain Mapp. 2012, 10.1002/hbm.22161. Epub ahead of print Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-Branco M: Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1. Hum Brain Mapp. 2012, 10.1002/hbm.22161. Epub ahead of print
23.
go back to reference Rakic P: A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995, 18: 383-388. 10.1016/0166-2236(95)93934-P.CrossRefPubMed Rakic P: A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995, 18: 383-388. 10.1016/0166-2236(95)93934-P.CrossRefPubMed
24.
go back to reference Armstrong E, Curtis M, Buxhoeveden DP, Fregoe C, Zilles K, Casanova MF, McCarthy WF: Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis. Cereb Cortex. 1991, 1: 426-432. 10.1093/cercor/1.5.426.CrossRefPubMed Armstrong E, Curtis M, Buxhoeveden DP, Fregoe C, Zilles K, Casanova MF, McCarthy WF: Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis. Cereb Cortex. 1991, 1: 426-432. 10.1093/cercor/1.5.426.CrossRefPubMed
25.
go back to reference Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Clasen L, Gogtay N, Giedd JN: How does your cortex grow?. J Neurosci. 2011, 31: 7174-7177. 10.1523/JNEUROSCI.0054-11.2011.PubMedCentralCrossRefPubMed Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Clasen L, Gogtay N, Giedd JN: How does your cortex grow?. J Neurosci. 2011, 31: 7174-7177. 10.1523/JNEUROSCI.0054-11.2011.PubMedCentralCrossRefPubMed
26.
go back to reference Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS: Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009, 19: 2728-2735. 10.1093/cercor/bhp026.PubMedCentralCrossRefPubMed Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS: Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009, 19: 2728-2735. 10.1093/cercor/bhp026.PubMedCentralCrossRefPubMed
27.
go back to reference Luders E, Narr KL, Thompson PM, Rex DE, Woods RP, Deluca H, Jancke L, Toga AW: Gender effects on cortical thickness and the influence of scaling. Hum Brain Mapp. 2006, 27: 314-324. 10.1002/hbm.20187.CrossRefPubMed Luders E, Narr KL, Thompson PM, Rex DE, Woods RP, Deluca H, Jancke L, Toga AW: Gender effects on cortical thickness and the influence of scaling. Hum Brain Mapp. 2006, 27: 314-324. 10.1002/hbm.20187.CrossRefPubMed
28.
go back to reference Luders E, Narr KL, Bilder RM, Szeszko PR, Gurbani MN, Hamilton L, Toga AW, Gaser C: Mapping the relationship between cortical convolution and intelligence: effects of gender. Cereb Cortex. 2008, 18: 2019-2026.PubMedCentralCrossRefPubMed Luders E, Narr KL, Bilder RM, Szeszko PR, Gurbani MN, Hamilton L, Toga AW, Gaser C: Mapping the relationship between cortical convolution and intelligence: effects of gender. Cereb Cortex. 2008, 18: 2019-2026.PubMedCentralCrossRefPubMed
29.
go back to reference Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J: Intellectual ability and cortical development in children and adolescents. Nature. 2006, 440: 676-679. 10.1038/nature04513.CrossRefPubMed Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J: Intellectual ability and cortical development in children and adolescents. Nature. 2006, 440: 676-679. 10.1038/nature04513.CrossRefPubMed
30.
go back to reference Narr KL, Bilder RM, Luders E, Thompson PM, Woods RP, Robinson D, Szeszko PR, Dimtcheva T, Gurbani M, Toga AW: Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage. 2007, 34: 939-948. 10.1016/j.neuroimage.2006.08.052.PubMedCentralCrossRefPubMed Narr KL, Bilder RM, Luders E, Thompson PM, Woods RP, Robinson D, Szeszko PR, Dimtcheva T, Gurbani M, Toga AW: Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage. 2007, 34: 939-948. 10.1016/j.neuroimage.2006.08.052.PubMedCentralCrossRefPubMed
31.
go back to reference Cutting LE, Cooper KL, Koth CW, Mostofsky SH, Kates WR, Denckla MB, Kaufmann WE: Megalencephaly in NF1: predominantly white matter contribution and mitigation by ADHD. Neurology. 2002, 59: 1388-1394. 10.1212/01.WNL.0000032370.68306.8A.CrossRefPubMed Cutting LE, Cooper KL, Koth CW, Mostofsky SH, Kates WR, Denckla MB, Kaufmann WE: Megalencephaly in NF1: predominantly white matter contribution and mitigation by ADHD. Neurology. 2002, 59: 1388-1394. 10.1212/01.WNL.0000032370.68306.8A.CrossRefPubMed
32.
go back to reference Dubovsky EC, Booth TN, Vezina G, Samango-Sprouse CA, Palmer KM, Brasseux CO: MR imaging of the corpus callosum in pediatric patients with neurofibromatosis type 1. AJNR Am J Neuroradiol. 2001, 22: 190-195.PubMed Dubovsky EC, Booth TN, Vezina G, Samango-Sprouse CA, Palmer KM, Brasseux CO: MR imaging of the corpus callosum in pediatric patients with neurofibromatosis type 1. AJNR Am J Neuroradiol. 2001, 22: 190-195.PubMed
33.
go back to reference Kayl AE, Moore BD, Slopis JM, Jackson EF, Leeds NE: Quantitative morphology of the corpus callosum in children with neurofibromatosis and attention-deficit hyperactivity disorder. J Child Neurol. 2000, 15: 90-96. 10.1177/088307380001500206.CrossRefPubMed Kayl AE, Moore BD, Slopis JM, Jackson EF, Leeds NE: Quantitative morphology of the corpus callosum in children with neurofibromatosis and attention-deficit hyperactivity disorder. J Child Neurol. 2000, 15: 90-96. 10.1177/088307380001500206.CrossRefPubMed
34.
go back to reference Pride N, Payne JM, Webster R, Shores EA, Rae C, North KN: Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type 1. J Child Neurol. 2010, 25: 834-841. 10.1177/0883073809350723.CrossRefPubMed Pride N, Payne JM, Webster R, Shores EA, Rae C, North KN: Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type 1. J Child Neurol. 2010, 25: 834-841. 10.1177/0883073809350723.CrossRefPubMed
35.
go back to reference Violante IR, Ribeiro MJ, Cunha G, Bernardino I, Duarte JV, Ramos F, Saraiva J, Silva E, Castelo-Branco M: Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network. PLoS One. 2012, 7: e38785-10.1371/journal.pone.0038785.PubMedCentralCrossRefPubMed Violante IR, Ribeiro MJ, Cunha G, Bernardino I, Duarte JV, Ramos F, Saraiva J, Silva E, Castelo-Branco M: Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network. PLoS One. 2012, 7: e38785-10.1371/journal.pone.0038785.PubMedCentralCrossRefPubMed
36.
go back to reference National Institutes of Health Consensus Development Conference: Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol. 1988, 45: 575-578.CrossRef National Institutes of Health Consensus Development Conference: Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol. 1988, 45: 575-578.CrossRef
37.
go back to reference Ozonoff S: Cognitive impairment in neurofibromatosis type 1. Am J Med Genet. 1999, 89: 45-52. 10.1002/(SICI)1096-8628(19990326)89:1<45::AID-AJMG9>3.0.CO;2-J.CrossRefPubMed Ozonoff S: Cognitive impairment in neurofibromatosis type 1. Am J Med Genet. 1999, 89: 45-52. 10.1002/(SICI)1096-8628(19990326)89:1<45::AID-AJMG9>3.0.CO;2-J.CrossRefPubMed
38.
go back to reference Wechsler D: Escala de Inteligência para Crianças - Terceira Edição (WISC-III): Manual. 2003, Lisboa, Portugal: Cegoc-Tea Wechsler D: Escala de Inteligência para Crianças - Terceira Edição (WISC-III): Manual. 2003, Lisboa, Portugal: Cegoc-Tea
39.
go back to reference Dale AM, Fischl B, Sereno MI: Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999, 9: 179-194. 10.1006/nimg.1998.0395.CrossRefPubMed Dale AM, Fischl B, Sereno MI: Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999, 9: 179-194. 10.1006/nimg.1998.0395.CrossRefPubMed
40.
go back to reference Fischl B, Dale AM: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000, 97: 11050-11055. 10.1073/pnas.200033797.PubMedCentralCrossRefPubMed Fischl B, Dale AM: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000, 97: 11050-11055. 10.1073/pnas.200033797.PubMedCentralCrossRefPubMed
41.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002, 33: 341-355. 10.1016/S0896-6273(02)00569-X.CrossRefPubMed Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002, 33: 341-355. 10.1016/S0896-6273(02)00569-X.CrossRefPubMed
42.
go back to reference Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM: Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004, 23 (Suppl 1): S69-84.CrossRefPubMed Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM: Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004, 23 (Suppl 1): S69-84.CrossRefPubMed
43.
go back to reference Fischl B, Liu A, Dale AM: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001, 20: 70-80. 10.1109/42.906426.CrossRefPubMed Fischl B, Liu A, Dale AM: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001, 20: 70-80. 10.1109/42.906426.CrossRefPubMed
44.
go back to reference Segonne F, Pacheco J, Fischl B: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007, 26: 518-529.CrossRefPubMed Segonne F, Pacheco J, Fischl B: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007, 26: 518-529.CrossRefPubMed
45.
go back to reference Fischl B, Sereno MI, Tootell RB, Dale AM: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp. 1999, 8: 272-284. 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4.CrossRefPubMed Fischl B, Sereno MI, Tootell RB, Dale AM: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp. 1999, 8: 272-284. 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4.CrossRefPubMed
46.
go back to reference Schaer M, Cuadra MB, Tamarit L, Lazeyras F, Eliez S, Thiran JP: A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging. 2008, 27: 161-170.CrossRefPubMed Schaer M, Cuadra MB, Tamarit L, Lazeyras F, Eliez S, Thiran JP: A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging. 2008, 27: 161-170.CrossRefPubMed
47.
go back to reference Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006, 31: 968-980. 10.1016/j.neuroimage.2006.01.021.CrossRefPubMed Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006, 31: 968-980. 10.1016/j.neuroimage.2006.01.021.CrossRefPubMed
48.
go back to reference Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage. 2004, 23: 724-738. 10.1016/j.neuroimage.2004.06.018.CrossRefPubMed Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage. 2004, 23: 724-738. 10.1016/j.neuroimage.2004.06.018.CrossRefPubMed
49.
go back to reference Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, Fischl B: Regional white matter volume differences in nondemented aging and Alzheimer's disease. Neuroimage. 2009, 44: 1247-1258. 10.1016/j.neuroimage.2008.10.030.PubMedCentralCrossRefPubMed Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, Fischl B: Regional white matter volume differences in nondemented aging and Alzheimer's disease. Neuroimage. 2009, 44: 1247-1258. 10.1016/j.neuroimage.2008.10.030.PubMedCentralCrossRefPubMed
50.
go back to reference Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological. 1995, 57: 289-300. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological. 1995, 57: 289-300.
51.
go back to reference Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T: Brain size and folding of the human cerebral cortex. Cereb Cortex. 2008, 18: 2352-2357. 10.1093/cercor/bhm261.CrossRefPubMed Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T: Brain size and folding of the human cerebral cortex. Cereb Cortex. 2008, 18: 2352-2357. 10.1093/cercor/bhm261.CrossRefPubMed
52.
go back to reference Murre JM, Sturdy DP: The connectivity of the brain: multi-level quantitative analysis. Biol Cybern. 1995, 73: 529-545. 10.1007/BF00199545.CrossRefPubMed Murre JM, Sturdy DP: The connectivity of the brain: multi-level quantitative analysis. Biol Cybern. 1995, 73: 529-545. 10.1007/BF00199545.CrossRefPubMed
53.
go back to reference Ruppin E, Schwartz EL, Yeshurun Y: Examining the volume efficiency of the cortical architecture in a multi-processor network model. Biol Cybern. 1993, 70: 89-94. 10.1007/BF00202570.CrossRefPubMed Ruppin E, Schwartz EL, Yeshurun Y: Examining the volume efficiency of the cortical architecture in a multi-processor network model. Biol Cybern. 1993, 70: 89-94. 10.1007/BF00202570.CrossRefPubMed
54.
go back to reference Bearden CE, van Erp TG, Dutton RA, Lee AD, Simon TJ, Cannon TD, Emanuel BS, McDonald-McGinn D, Zackai EH, Thompson PM: Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions. Cereb Cortex. 2009, 19: 115-126.PubMedCentralCrossRefPubMed Bearden CE, van Erp TG, Dutton RA, Lee AD, Simon TJ, Cannon TD, Emanuel BS, McDonald-McGinn D, Zackai EH, Thompson PM: Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions. Cereb Cortex. 2009, 19: 115-126.PubMedCentralCrossRefPubMed
55.
go back to reference Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J, Thompson PM: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex. 2007, 17: 2007-2018.CrossRefPubMed Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J, Thompson PM: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex. 2007, 17: 2007-2018.CrossRefPubMed
56.
go back to reference Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Eckert MA, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. J Neurosci. 2005, 25: 4146-4158. 10.1523/JNEUROSCI.0165-05.2005.CrossRefPubMed Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Eckert MA, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. J Neurosci. 2005, 25: 4146-4158. 10.1523/JNEUROSCI.0165-05.2005.CrossRefPubMed
57.
go back to reference Schmahmann JD, Pandya DN: Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex. 2008, 44: 1037-1066. 10.1016/j.cortex.2008.04.004.PubMedCentralCrossRefPubMed Schmahmann JD, Pandya DN: Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex. 2008, 44: 1037-1066. 10.1016/j.cortex.2008.04.004.PubMedCentralCrossRefPubMed
58.
go back to reference Levine TM, Materek A, Abel J, O'Donnell M, Cutting LE: Cognitive profile of neurofibromatosis type 1. Semin Pediatr Neurol. 2006, 13: 8-20. 10.1016/j.spen.2006.01.006.CrossRefPubMed Levine TM, Materek A, Abel J, O'Donnell M, Cutting LE: Cognitive profile of neurofibromatosis type 1. Semin Pediatr Neurol. 2006, 13: 8-20. 10.1016/j.spen.2006.01.006.CrossRefPubMed
59.
go back to reference Roy A, Roulin JL, Charbonnier V, Allain P, Fasotti L, Barbarot S, Stalder JF, Terrien A, Le Gall D: Executive dysfunction in children with neurofibromatosis type 1: a study of action planning. J Int Neuropsychol Soc. 2010, 16: 1056-1063. 10.1017/S135561771000086X.CrossRefPubMed Roy A, Roulin JL, Charbonnier V, Allain P, Fasotti L, Barbarot S, Stalder JF, Terrien A, Le Gall D: Executive dysfunction in children with neurofibromatosis type 1: a study of action planning. J Int Neuropsychol Soc. 2010, 16: 1056-1063. 10.1017/S135561771000086X.CrossRefPubMed
60.
go back to reference Grahn JA, Parkinson JA, Owen AM: The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008, 86: 141-155. 10.1016/j.pneurobio.2008.09.004.CrossRefPubMed Grahn JA, Parkinson JA, Owen AM: The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008, 86: 141-155. 10.1016/j.pneurobio.2008.09.004.CrossRefPubMed
61.
go back to reference Kemp JM, Powell TP: The cortico-striate projection in the monkey. Brain. 1970, 93: 525-546. 10.1093/brain/93.3.525.CrossRefPubMed Kemp JM, Powell TP: The cortico-striate projection in the monkey. Brain. 1970, 93: 525-546. 10.1093/brain/93.3.525.CrossRefPubMed
62.
go back to reference Yeterian EH, Van Hoesen GW: Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 1978, 139: 43-63. 10.1016/0006-8993(78)90059-8.CrossRefPubMed Yeterian EH, Van Hoesen GW: Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 1978, 139: 43-63. 10.1016/0006-8993(78)90059-8.CrossRefPubMed
63.
go back to reference Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, Cannon TD, Levine MS, Silva AJ: Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A. 2010, 107: 13141-13146. 10.1073/pnas.1004829107.PubMedCentralCrossRefPubMed Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, Cannon TD, Levine MS, Silva AJ: Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A. 2010, 107: 13141-13146. 10.1073/pnas.1004829107.PubMedCentralCrossRefPubMed
64.
go back to reference Schrimsher GW, Billingsley RL, Jackson EF, Moore BD: Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children. J Child Neurol. 2002, 17: 877-884. 10.1177/08830738020170122001.CrossRefPubMed Schrimsher GW, Billingsley RL, Jackson EF, Moore BD: Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children. J Child Neurol. 2002, 17: 877-884. 10.1177/08830738020170122001.CrossRefPubMed
65.
go back to reference Wignall EL, Griffiths PD, Papadakis NG, Wilkinson ID, Wallis LI, Bandmann O, Cowell PE, Hoggard N: Corpus callosum morphology and microstructure assessed using structural MR imaging and diffusion tensor imaging: initial findings in adults with neurofibromatosis type 1. AJNR Am J Neuroradiol. 2010, 31: 856-861. 10.3174/ajnr.A2005.CrossRefPubMed Wignall EL, Griffiths PD, Papadakis NG, Wilkinson ID, Wallis LI, Bandmann O, Cowell PE, Hoggard N: Corpus callosum morphology and microstructure assessed using structural MR imaging and diffusion tensor imaging: initial findings in adults with neurofibromatosis type 1. AJNR Am J Neuroradiol. 2010, 31: 856-861. 10.3174/ajnr.A2005.CrossRefPubMed
66.
go back to reference Zamboni SL, Loenneker T, Boltshauser E, Martin E, Il'yasov KA: Contribution of diffusion tensor MR imaging in detecting cerebral microstructural changes in adults with neurofibromatosis type 1. AJNR Am J Neuroradiol. 2007, 28: 773-776.PubMed Zamboni SL, Loenneker T, Boltshauser E, Martin E, Il'yasov KA: Contribution of diffusion tensor MR imaging in detecting cerebral microstructural changes in adults with neurofibromatosis type 1. AJNR Am J Neuroradiol. 2007, 28: 773-776.PubMed
67.
go back to reference Passingham RE: Anatomical differences between the neocortex of man and other primates. Brain Behav Evol. 1973, 7: 337-359. 10.1159/000124422.CrossRefPubMed Passingham RE: Anatomical differences between the neocortex of man and other primates. Brain Behav Evol. 1973, 7: 337-359. 10.1159/000124422.CrossRefPubMed
68.
go back to reference Zilles K, Armstrong E, Schleicher A, Kretschmann HJ: The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl). 1988, 179: 173-179. 10.1007/BF00304699.CrossRef Zilles K, Armstrong E, Schleicher A, Kretschmann HJ: The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl). 1988, 179: 173-179. 10.1007/BF00304699.CrossRef
69.
go back to reference Payne JM, Hyman SL, Shores EA, North KN: Assessment of executive function and attention in children with neurofibromatosis type 1: relationships between cognitive measures and real-world behavior. Child Neuropsychol. 2011, 17: 313-329. 10.1080/09297049.2010.542746.CrossRefPubMed Payne JM, Hyman SL, Shores EA, North KN: Assessment of executive function and attention in children with neurofibromatosis type 1: relationships between cognitive measures and real-world behavior. Child Neuropsychol. 2011, 17: 313-329. 10.1080/09297049.2010.542746.CrossRefPubMed
70.
go back to reference du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B: Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2006, 129: 3315-3328. 10.1093/brain/awl244.CrossRefPubMed du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B: Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2006, 129: 3315-3328. 10.1093/brain/awl244.CrossRefPubMed
71.
go back to reference Tsujimoto S, Genovesio A, Wise SP: Frontal pole cortex: encoding ends at the end of the endbrain. Trends Cogn Sci. 2011, 15: 169-176. 10.1016/j.tics.2011.02.001.CrossRefPubMed Tsujimoto S, Genovesio A, Wise SP: Frontal pole cortex: encoding ends at the end of the endbrain. Trends Cogn Sci. 2011, 15: 169-176. 10.1016/j.tics.2011.02.001.CrossRefPubMed
72.
go back to reference Elliott R, Dolan RJ, Frith CD: Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex. 2000, 10: 308-317. 10.1093/cercor/10.3.308.CrossRefPubMed Elliott R, Dolan RJ, Frith CD: Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex. 2000, 10: 308-317. 10.1093/cercor/10.3.308.CrossRefPubMed
73.
go back to reference Zald DH, Andreotti C: Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia. 2010, 48: 3377-3391. 10.1016/j.neuropsychologia.2010.08.012.CrossRefPubMed Zald DH, Andreotti C: Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia. 2010, 48: 3377-3391. 10.1016/j.neuropsychologia.2010.08.012.CrossRefPubMed
74.
go back to reference Bush G, Luu P, Posner MI: Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000, 4: 215-222. 10.1016/S1364-6613(00)01483-2.CrossRefPubMed Bush G, Luu P, Posner MI: Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000, 4: 215-222. 10.1016/S1364-6613(00)01483-2.CrossRefPubMed
75.
go back to reference Billingsley RL, Slopis JM, Swank PR, Jackson EF, Moore BD: Cortical morphology associated with language function in neurofibromatosis, type I. Brain Lang. 2003, 85: 125-139. 10.1016/S0093-934X(02)00563-1.CrossRefPubMed Billingsley RL, Slopis JM, Swank PR, Jackson EF, Moore BD: Cortical morphology associated with language function in neurofibromatosis, type I. Brain Lang. 2003, 85: 125-139. 10.1016/S0093-934X(02)00563-1.CrossRefPubMed
76.
go back to reference Hagoort P: On Broca, brain, and binding: a new framework. Trends Cogn Sci. 2005, 9: 416-423. 10.1016/j.tics.2005.07.004.CrossRefPubMed Hagoort P: On Broca, brain, and binding: a new framework. Trends Cogn Sci. 2005, 9: 416-423. 10.1016/j.tics.2005.07.004.CrossRefPubMed
77.
go back to reference Xiang HD, Fonteijn HM, Norris DG, Hagoort P: Topographical functional connectivity pattern in the perisylvian language networks. Cereb Cortex. 2010, 20: 549-560. 10.1093/cercor/bhp119.CrossRefPubMed Xiang HD, Fonteijn HM, Norris DG, Hagoort P: Topographical functional connectivity pattern in the perisylvian language networks. Cereb Cortex. 2010, 20: 549-560. 10.1093/cercor/bhp119.CrossRefPubMed
78.
go back to reference Cabeza R, Nyberg L: Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000, 12: 1-47.CrossRefPubMed Cabeza R, Nyberg L: Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000, 12: 1-47.CrossRefPubMed
79.
go back to reference Chao LL, Haxby JV, Martin A: Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci. 1999, 2: 913-919. 10.1038/13217.CrossRefPubMed Chao LL, Haxby JV, Martin A: Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci. 1999, 2: 913-919. 10.1038/13217.CrossRefPubMed
80.
go back to reference Gough PM, Nobre AC, Devlin JT: Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci. 2005, 25: 8010-8016. 10.1523/JNEUROSCI.2307-05.2005.PubMedCentralCrossRefPubMed Gough PM, Nobre AC, Devlin JT: Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci. 2005, 25: 8010-8016. 10.1523/JNEUROSCI.2307-05.2005.PubMedCentralCrossRefPubMed
81.
go back to reference Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR: Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci U S A. 2010, 107: 16494-16499. 10.1073/pnas.1008121107.PubMedCentralCrossRefPubMed Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR: Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci U S A. 2010, 107: 16494-16499. 10.1073/pnas.1008121107.PubMedCentralCrossRefPubMed
82.
go back to reference Feldmann R, Denecke J, Grenzebach M, Schuierer G, Weglage J: Neurofibromatosis type 1: motor and cognitive function and T2-weighted MRI hyperintensities. Neurology. 2003, 61: 1725-1728. 10.1212/01.WNL.0000098881.95854.5F.CrossRefPubMed Feldmann R, Denecke J, Grenzebach M, Schuierer G, Weglage J: Neurofibromatosis type 1: motor and cognitive function and T2-weighted MRI hyperintensities. Neurology. 2003, 61: 1725-1728. 10.1212/01.WNL.0000098881.95854.5F.CrossRefPubMed
83.
go back to reference Rowbotham I, Pit-ten Cate IM, Sonuga-Barke EJ, Huijbregts SC: Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology. 2009, 23: 50-60.CrossRefPubMed Rowbotham I, Pit-ten Cate IM, Sonuga-Barke EJ, Huijbregts SC: Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology. 2009, 23: 50-60.CrossRefPubMed
84.
go back to reference Purves D, Williams SM: Neuroscience. 2001, Sunderland, MA: Sinauer Associates, 2 Purves D, Williams SM: Neuroscience. 2001, Sunderland, MA: Sinauer Associates, 2
85.
go back to reference Clements-Stephens AM, Rimrodt SL, Gaur P, Cutting LE: Visuospatial processing in children with neurofibromatosis type 1. Neuropsychologia. 2008, 46: 690-697. 10.1016/j.neuropsychologia.2007.09.013.PubMedCentralCrossRefPubMed Clements-Stephens AM, Rimrodt SL, Gaur P, Cutting LE: Visuospatial processing in children with neurofibromatosis type 1. Neuropsychologia. 2008, 46: 690-697. 10.1016/j.neuropsychologia.2007.09.013.PubMedCentralCrossRefPubMed
86.
go back to reference Rogers J, Kochunov P, Zilles K, Shelledy W, Lancaster J, Thompson P, Duggirala R, Blangero J, Fox PT, Glahn DC: On the genetic architecture of cortical folding and brain volume in primates. Neuroimage. 2010, 53: 1103-1108. 10.1016/j.neuroimage.2010.02.020.PubMedCentralCrossRefPubMed Rogers J, Kochunov P, Zilles K, Shelledy W, Lancaster J, Thompson P, Duggirala R, Blangero J, Fox PT, Glahn DC: On the genetic architecture of cortical folding and brain volume in primates. Neuroimage. 2010, 53: 1103-1108. 10.1016/j.neuroimage.2010.02.020.PubMedCentralCrossRefPubMed
87.
go back to reference Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C: Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci. 2011, 31: 2878-2887. 10.1523/JNEUROSCI.5458-10.2011.PubMedCentralCrossRefPubMed Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C: Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci. 2011, 31: 2878-2887. 10.1523/JNEUROSCI.5458-10.2011.PubMedCentralCrossRefPubMed
88.
go back to reference Afif A, Bouvier R, Buenerd A, Trouillas J, Mertens P: Development of the human fetal insular cortex: study of the gyration from 13 to 28 gestational weeks. Brain Struct Funct. 2007, 212: 335-346. 10.1007/s00429-007-0161-1.CrossRefPubMed Afif A, Bouvier R, Buenerd A, Trouillas J, Mertens P: Development of the human fetal insular cortex: study of the gyration from 13 to 28 gestational weeks. Brain Struct Funct. 2007, 212: 335-346. 10.1007/s00429-007-0161-1.CrossRefPubMed
89.
go back to reference Caviness VS: Mechanical model of brain convolutional development. Science. 1975, 189: 18-21. 10.1126/science.1135626.CrossRefPubMed Caviness VS: Mechanical model of brain convolutional development. Science. 1975, 189: 18-21. 10.1126/science.1135626.CrossRefPubMed
90.
go back to reference Kostovic I, Rakic P: Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990, 297: 441-470. 10.1002/cne.902970309.CrossRefPubMed Kostovic I, Rakic P: Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990, 297: 441-470. 10.1002/cne.902970309.CrossRefPubMed
91.
go back to reference Van Essen DC: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997, 385: 313-318. 10.1038/385313a0.CrossRefPubMed Van Essen DC: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997, 385: 313-318. 10.1038/385313a0.CrossRefPubMed
Metadata
Title
Gyrification, cortical and subcortical morphometry in neurofibromatosis type 1: an uneven profile of developmental abnormalities
Authors
Inês R Violante
Maria J Ribeiro
Eduardo D Silva
Miguel Castelo-Branco
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2013
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/1866-1955-5-3

Other articles of this Issue 1/2013

Journal of Neurodevelopmental Disorders 1/2013 Go to the issue