Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2020

01-12-2020 | Orthosis | Research

Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users

Authors: Marta Moltedo, Tomislav Baček, Ben Serrien, Kevin Langlois, Bram Vanderborght, Dirk Lefeber, Carlos Rodriguez-Guerrero

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2020

Login to get access

Abstract

Background

In the last decades, several powered ankle-foot orthoses have been developed to assist the ankle joint of their users during walking. Recent studies have shown that the effects of the assistance provided by powered ankle-foot orthoses depend on the assistive profile. In compliant actuators, the stiffness level influences the actuator’s performance. However, the effects of this parameter on the users has not been yet evaluated. The goal of this study is to assess the effects of the assistance provided by a variable stiffness ankle actuator on healthy young users. More specifically, the effect of different onset times of the push-off torque and different actuator’s stiffness levels has been investigated.

Methods

Eight healthy subjects walked with a unilateral powered ankle-foot orthosis in several assisted walking trials. The powered orthosis was actuated in the sagittal plane by a variable stiffness actuator. During the assisted walking trials, three different onset times of the push-off assistance and three different actuator’s stiffness levels were used. The metabolic cost of walking, lower limb muscles activation, joint kinematics, and gait parameters measured during different assisted walking trials were compared to the ones measured during normal walking and walking with the powered orthosis not providing assistance.

Results

This study found trends for more compliant settings of the ankle actuator resulting in bigger reductions of the metabolic cost of walking and soleus muscle activation in the stance phase during assisted walking as compared to the unassisted walking trial. In addition to this, the study found that, among the tested onset times, the earlier ones showed a trend for bigger reductions of the activation of the soleus muscle during stance, while the later ones led to a bigger reduction in the metabolic cost of walking in the assisted walking trials as compared to the unassisted condition.

Conclusions

This study presents a first attempt to show that, together with the assistive torque profile, also the stiffness level of a compliant ankle actuator can influence the assistive performance of a powered ankle-foot orthosis.
Appendix
Available only for authorised users
Literature
10.
12.
go back to reference Yeung LF, Ockenfeld C, Pang MK, Wai HW, Soo OY, Li SW, Tong KY. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. In: 2017 International Conference on Rehabilitation Robotics. London, UK: IEEE: 2017. p. 211–215. https://doi.org/10.1109/icorr.2017.8009248. Yeung LF, Ockenfeld C, Pang MK, Wai HW, Soo OY, Li SW, Tong KY. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. In: 2017 International Conference on Rehabilitation Robotics. London, UK: IEEE: 2017. p. 211–215. https://​doi.​org/​10.​1109/​icorr.​2017.​8009248.
21.
go back to reference Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, Collins SH. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017; 356(6344):1280–4.PubMed Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, Collins SH. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017; 356(6344):1280–4.PubMed
27.
go back to reference Grioli G, Wolf S, Garabini M, Catalano M, Burdet E, Caldwell D, Carloni R, Friedl W, Grebenstein M, Laffranchi M, Lefeber D, Stramigioli S, Tsagarakis N, van Damme M, Vanderborght B, Albu-Schaeffer A, Bicchi A. Variable stiffness actuators: The user’ s point of view. Int J Robot Res. 2015; 34(6):727–43. https://doi.org/10.1177/0278364914566515. Grioli G, Wolf S, Garabini M, Catalano M, Burdet E, Caldwell D, Carloni R, Friedl W, Grebenstein M, Laffranchi M, Lefeber D, Stramigioli S, Tsagarakis N, van Damme M, Vanderborght B, Albu-Schaeffer A, Bicchi A. Variable stiffness actuators: The user’ s point of view. Int J Robot Res. 2015; 34(6):727–43. https://​doi.​org/​10.​1177/​0278364914566515​.
28.
go back to reference Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G, Garabini M, Grebenstein M, Grioli G, Haddadin S, Hoppner H, Jafari A, Laffranchi M, Lefeber D, Petit F, Stramigioli S, Tsagarakis N, Van Damme M, Van Ham R, Visser LC, Wolf S. Variable impedance actuators: A review. Robot Auton Syst. 2013; 61(12):1601–14. https://doi.org/10.1016/j.robot.2013.06.009. Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G, Garabini M, Grebenstein M, Grioli G, Haddadin S, Hoppner H, Jafari A, Laffranchi M, Lefeber D, Petit F, Stramigioli S, Tsagarakis N, Van Damme M, Van Ham R, Visser LC, Wolf S. Variable impedance actuators: A review. Robot Auton Syst. 2013; 61(12):1601–14. https://​doi.​org/​10.​1016/​j.​robot.​2013.​06.​009.
29.
go back to reference Van Ham R, Thomas S, Vanderborght B, Hollander K, Lefeber D. Review of actuators with passive adjustable compliance controllable stiffness for robotic applications. IEEE Robot Autom Mag. 2009; 16(3):81–94. Van Ham R, Thomas S, Vanderborght B, Hollander K, Lefeber D. Review of actuators with passive adjustable compliance controllable stiffness for robotic applications. IEEE Robot Autom Mag. 2009; 16(3):81–94.
31.
go back to reference Brackx B, Geeroms J, Vantilt J, Grosu V, Junius K, Cuypers H, Vanderborght B, Lefeber D. Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo, Brazil: IEEE: 2014. p. 485–90. https://doi.org/10.1109/biorob.2014.6913824. Brackx B, Geeroms J, Vantilt J, Grosu V, Junius K, Cuypers H, Vanderborght B, Lefeber D. Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo, Brazil: IEEE: 2014. p. 485–90. https://​doi.​org/​10.​1109/​biorob.​2014.​6913824.
32.
go back to reference Junius K, Brackx B, Grosu V, Cuypers H, Geeroms J, Moltedo M, Vanderborght B, Lefeber D. Mechatronic design of a sit-to-stance exoskeleton. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo, Brazil: IEEE: 2014. p. 945–50. https://doi.org/10.1109/biorob.2014.6913902. Junius K, Brackx B, Grosu V, Cuypers H, Geeroms J, Moltedo M, Vanderborght B, Lefeber D. Mechatronic design of a sit-to-stance exoskeleton. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo, Brazil: IEEE: 2014. p. 945–50. https://​doi.​org/​10.​1109/​biorob.​2014.​6913902.
33.
go back to reference Cherelle P, Grosu V, Beyl P, Mathys A, Van Ham R, Van Damme M, Vanderborght B, Lefeber D. The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO. In: 2010 3rd IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Tokyo, Japan: IEEE: 2010. p. 27–32. https://doi.org/10.1109/biorob.2010.5627030. Cherelle P, Grosu V, Beyl P, Mathys A, Van Ham R, Van Damme M, Vanderborght B, Lefeber D. The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO. In: 2010 3rd IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Tokyo, Japan: IEEE: 2010. p. 27–32. https://​doi.​org/​10.​1109/​biorob.​2010.​5627030.
34.
go back to reference Bacek T, Unal R, Moltedo M, Junius K, Cuypers H, Vanderborght B, Lefeber D. Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons. In: 2015 IEEE International Conference on Rehabilitation Robotics. Singapore: IEEE: 2015. p. 583–8. https://doi.org/10.1109/icorr.2015.7281263. Bacek T, Unal R, Moltedo M, Junius K, Cuypers H, Vanderborght B, Lefeber D. Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons. In: 2015 IEEE International Conference on Rehabilitation Robotics. Singapore: IEEE: 2015. p. 583–8. https://​doi.​org/​10.​1109/​icorr.​2015.​7281263.
35.
go back to reference Bacek T, Moltedo M, Langlois K, Rodriguez-Guerrero C, Vanderborght B, Lefeber D. A novel modular compliant knee joint actuator for use in assistive and rehabilitation orthoses. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE: 2017. p. 5812–7. https://doi.org/10.1109/iros.2017.8206472. Bacek T, Moltedo M, Langlois K, Rodriguez-Guerrero C, Vanderborght B, Lefeber D. A novel modular compliant knee joint actuator for use in assistive and rehabilitation orthoses. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE: 2017. p. 5812–7. https://​doi.​org/​10.​1109/​iros.​2017.​8206472.
36.
go back to reference Bacek T, Moltedo M, Rodriguez-Guerrero C, Geeroms J, Vanderborght B, Lefeber D. Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity. Mech Mach Theory. 2018; 130:71–85. Bacek T, Moltedo M, Rodriguez-Guerrero C, Geeroms J, Vanderborght B, Lefeber D. Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity. Mech Mach Theory. 2018; 130:71–85.
38.
go back to reference Moltedo M, Bacek T, Langlois K, Junius K, Vanderborght B, Lefeber D. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. In: 2017 International Conference on Rehabilitation Robotics (ICORR). London, UK: IEEE: 2017. p. 283–8. https://doi.org/10.1109/icorr.2017.8009260. Moltedo M, Bacek T, Langlois K, Junius K, Vanderborght B, Lefeber D. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. In: 2017 International Conference on Rehabilitation Robotics (ICORR). London, UK: IEEE: 2017. p. 283–8. https://​doi.​org/​10.​1109/​icorr.​2017.​8009260.
39.
go back to reference Moltedo M, Bacek T, Junius K, Vanderborght B, Lefeber D. Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapore: IEEE: 2016. p. 1224–9. Moltedo M, Bacek T, Junius K, Vanderborght B, Lefeber D. Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapore: IEEE: 2016. p. 1224–9.
41.
go back to reference Langlois K, Moltedo M, Bacek T, Rodriguez-Guerrero C, Vanderborght B, Lefeber D. Design and development of customized physical interfaces to reduce relative motion between the user and a powered ankle foot exoskeleton. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Twente, The Netherlands: IEEE: 2018. p. 1083–8. Langlois K, Moltedo M, Bacek T, Rodriguez-Guerrero C, Vanderborght B, Lefeber D. Design and development of customized physical interfaces to reduce relative motion between the user and a powered ankle foot exoskeleton. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Twente, The Netherlands: IEEE: 2018. p. 1083–8.
43.
go back to reference Konrad P. The ABC of EMG. A Practical Introduction to Kinesiological Electromyography. Scottsdale, Arizona 85254: Noraxon Inc. USA; 2006. Konrad P. The ABC of EMG. A Practical Introduction to Kinesiological Electromyography. Scottsdale, Arizona 85254: Noraxon Inc. USA; 2006.
46.
go back to reference Hof AL. Scaling gait data to body size. Gait & Posture. 1996; 4:222–3. Hof AL. Scaling gait data to body size. Gait & Posture. 1996; 4:222–3.
47.
go back to reference Winter DA. The Biomechanics and Motor Control of Human Gait. Waterloo, Ontario, Canada: University of Waterloo Press; 1987, p. 80. Winter DA. The Biomechanics and Motor Control of Human Gait. Waterloo, Ontario, Canada: University of Waterloo Press; 1987, p. 80.
48.
go back to reference Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995; 28(10):1257–61.PubMed Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995; 28(10):1257–61.PubMed
49.
50.
go back to reference Hamill J, Selbie WS, Kepple TM. Three-dimensional kinematics In: Robertson G, Caldwell G, Hamill J, Kamen G, Whitlessey S, editors. Research Methods in Biomechanics, 2nd edn.Leeds UK: 2014. Hamill J, Selbie WS, Kepple TM. Three-dimensional kinematics In: Robertson G, Caldwell G, Hamill J, Kamen G, Whitlessey S, editors. Research Methods in Biomechanics, 2nd edn.Leeds UK: 2014.
51.
go back to reference (https://isek.org/). International society of electrophysiology and kinesiology. (https://​isek.​org/​). International society of electrophysiology and kinesiology.
52.
go back to reference Brockway JM. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987; 41(6):463–571.PubMed Brockway JM. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987; 41(6):463–571.PubMed
54.
go back to reference Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis, 2nd edn.: Wiley; 2011, p. 752. Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis, 2nd edn.: Wiley; 2011, p. 752.
55.
go back to reference Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005; 21(2):189–97.PubMedPubMedCentral Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005; 21(2):189–97.PubMedPubMedCentral
57.
61.
62.
63.
go back to reference Flynn L, Geeroms J, Jimenez-Fabian R, Heins S, Vanderborght B, Munih M, Molino Lova R, Vitiello N, Lefeber D. The challenges and achievements of experimental implementation of an active transfemoral prosthesis based on biological quasi-stiffness: the CYBERLEGs beta-prosthesis. Front Neurorobotics. 2018; 12:80. https://doi.org/10.3389/fnbot.2018.00080. Flynn L, Geeroms J, Jimenez-Fabian R, Heins S, Vanderborght B, Munih M, Molino Lova R, Vitiello N, Lefeber D. The challenges and achievements of experimental implementation of an active transfemoral prosthesis based on biological quasi-stiffness: the CYBERLEGs beta-prosthesis. Front Neurorobotics. 2018; 12:80. https://​doi.​org/​10.​3389/​fnbot.​2018.​00080.
Metadata
Title
Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users
Authors
Marta Moltedo
Tomislav Baček
Ben Serrien
Kevin Langlois
Bram Vanderborght
Dirk Lefeber
Carlos Rodriguez-Guerrero
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Orthosis
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2020
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-00723-0

Other articles of this Issue 1/2020

Journal of NeuroEngineering and Rehabilitation 1/2020 Go to the issue