Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance

Authors: Philippe Malcolm, Samuel Galle, Pieter Van den Berghe, Dirk De Clercq

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Many gait impairments are characterized by asymmetry and result in reduced mobility. Exoskeletons could be useful for restoring gait symmetry by assisting only one leg. However, we still have limited understanding of the effects of unilateral exoskeleton assistance. Our aim was to compare the effects of unilateral and bilateral assistance using a within-subject study design.

Methods

Eleven participants walked in different exoskeleton conditions. In the Unilateral conditions, only one leg was assisted. In Bilateral Matched Total Work, half of the assistance from the Unilateral conditions was applied to both legs such that the bilateral sum was equal to that of the Unilateral conditions. In Bilateral Matched Work Per Leg, the same assistance as in the Unilateral conditions was provided to both legs such that the bilateral sum was the double of that of the Unilateral conditions. In the Powered-Off condition, no assistance was provided. We measured metabolic energy consumption, exoskeleton mechanics and kinematics.

Results

On average, the Unilateral, Bilateral Matched Total Work and Bilateral Matched Work Per Leg conditions reduced the metabolic rate by 7, 11 and 15%, respectively, compared with the Powered-Off condition. A possible explanation for why the Unilateral conditions effectively reduced the metabolic rate could be that they caused only very little asymmetry in gait biomechanics, except at the ankle and in the horizontal center-of-mass velocity. We found the highest ratio of metabolic rate reduction versus positive work assistance with bilateral assistance and low work per leg (Bilateral Matched Total Work). Statistical analysis indicated that assistance symmetry and assistance per leg are more important than the bilateral summed assistance for reducing the metabolic rate of walking.

Conclusions

These data bridge the gap between conclusions from studies with unilateral and bilateral exoskeletons and inform how unilateral assistance can be used to influence gait parameters, such as center-of-mass velocity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hsiao-Wecksler ET, Polk JD, Rosengren KS, Sosnoff JJ, Hong S. A review of new analytic techniques for quantifying symmetry in locomotion. Symmetry (Basel). 2010;2:1135–55.CrossRef Hsiao-Wecksler ET, Polk JD, Rosengren KS, Sosnoff JJ, Hong S. A review of new analytic techniques for quantifying symmetry in locomotion. Symmetry (Basel). 2010;2:1135–55.CrossRef
2.
go back to reference Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a review. Gait Posture. 2000;12:34–45.CrossRefPubMed Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a review. Gait Posture. 2000;12:34–45.CrossRefPubMed
3.
4.
go back to reference Adamczyk PG, Kuo AD. Mechanisms of gait asymmetry due to push-off deficiency in unilateral amputees. IEEE Trans Neural Syst Rehabil Eng. 2015;23:776–85.CrossRefPubMed Adamczyk PG, Kuo AD. Mechanisms of gait asymmetry due to push-off deficiency in unilateral amputees. IEEE Trans Neural Syst Rehabil Eng. 2015;23:776–85.CrossRefPubMed
5.
go back to reference Allen JL, Kautz SA, Neptune RR. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011;33:538–43.CrossRefPubMedPubMedCentral Allen JL, Kautz SA, Neptune RR. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011;33:538–43.CrossRefPubMedPubMedCentral
6.
go back to reference Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil. 2007;88:43–9.CrossRefPubMed Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil. 2007;88:43–9.CrossRefPubMed
7.
go back to reference Roerdink M, Beek PJ. Understanding inconsistent step-length asymmetries across hemiplegic stroke patients: impairments and compensatory gait. Neurorehabil Neural Repair. 2011;25:253–8.CrossRefPubMed Roerdink M, Beek PJ. Understanding inconsistent step-length asymmetries across hemiplegic stroke patients: impairments and compensatory gait. Neurorehabil Neural Repair. 2011;25:253–8.CrossRefPubMed
8.
go back to reference Farris DJ, Hampton A, Lewek MD, Sawicki GS. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke : from individual limbs to lower limb joints. J. Neuroeng. Rehabil. 2015;12:1–12.CrossRef Farris DJ, Hampton A, Lewek MD, Sawicki GS. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke : from individual limbs to lower limb joints. J. Neuroeng. Rehabil. 2015;12:1–12.CrossRef
9.
go back to reference Mahon CE, Farris DJ, Sawicki GS, Lewek MD. Individual limb mechanical analysis of gait following stroke. J Biomech. 2015;48:984–9.CrossRefPubMed Mahon CE, Farris DJ, Sawicki GS, Lewek MD. Individual limb mechanical analysis of gait following stroke. J Biomech. 2015;48:984–9.CrossRefPubMed
10.
go back to reference Kobayashi H, Kakihana W, Kimura T. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration. J. Neuroeng. Rehabil. 2014;11:109.CrossRefPubMedPubMedCentral Kobayashi H, Kakihana W, Kimura T. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration. J. Neuroeng. Rehabil. 2014;11:109.CrossRefPubMedPubMedCentral
11.
go back to reference Wutzke CJ, Sawicki GS, Lewek MD. The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J Biomech. 2012;45:2405–10.CrossRefPubMed Wutzke CJ, Sawicki GS, Lewek MD. The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J Biomech. 2012;45:2405–10.CrossRefPubMed
12.
go back to reference Hesse S, Werner C, Bardeleben A, Barbeau H. Body weight-supported treadmill training after stroke. Curr Atheroscler Rep. 2001;3:287–94.CrossRefPubMed Hesse S, Werner C, Bardeleben A, Barbeau H. Body weight-supported treadmill training after stroke. Curr Atheroscler Rep. 2001;3:287–94.CrossRefPubMed
13.
go back to reference Tyson SF, Kent RM. Effects of an ankle-foot orthosis on balance and walking after stroke: a systematic review and pooled meta-analysis. Arch Phys Med Rehabil. 2013;94:1377–85.CrossRefPubMed Tyson SF, Kent RM. Effects of an ankle-foot orthosis on balance and walking after stroke: a systematic review and pooled meta-analysis. Arch Phys Med Rehabil. 2013;94:1377–85.CrossRefPubMed
14.
go back to reference Herr HM, Grabowski AM. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Biol Sci. 2012;279:457–64.CrossRefPubMed Herr HM, Grabowski AM. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Biol Sci. 2012;279:457–64.CrossRefPubMed
15.
go back to reference Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130:1861–72.CrossRefPubMedPubMedCentral Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130:1861–72.CrossRefPubMedPubMedCentral
16.
go back to reference Finley JM, Long A, Bastian AJ, Torres-Oviedo G. Spatial and temporal control contribute to step length asymmetry during Split-Belt adaptation and Hemiparetic gait. Neurorehabil Neural Repair. 2015. Finley JM, Long A, Bastian AJ, Torres-Oviedo G. Spatial and temporal control contribute to step length asymmetry during Split-Belt adaptation and Hemiparetic gait. Neurorehabil Neural Repair. 2015.
17.
go back to reference Regnaux JP, Pradon D, Roche N, Robertson J, Bussel B, Dobkin B. Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke. Clin Biomech. 2008;23:762–8.CrossRef Regnaux JP, Pradon D, Roche N, Robertson J, Bussel B, Dobkin B. Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke. Clin Biomech. 2008;23:762–8.CrossRef
18.
go back to reference Veneman JF. Emerging directions in lower limb externally wearable robots. Front Inf Technol Electron Eng. 2016;9184:1–8. Veneman JF. Emerging directions in lower limb externally wearable robots. Front Inf Technol Electron Eng. 2016;9184:1–8.
19.
go back to reference Lin PY, Yang YR, Cheng SJ, Wang RY. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch Phys Med Rehabil. 2006;87:562–8.CrossRefPubMed Lin PY, Yang YR, Cheng SJ, Wang RY. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch Phys Med Rehabil. 2006;87:562–8.CrossRefPubMed
20.
go back to reference Awad LN, Bae J, O’Donnell K, De Rossi SMM, Hendron K, Sloot LH, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9. Awad LN, Bae J, O’Donnell K, De Rossi SMM, Hendron K, Sloot LH, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9.
21.
go back to reference Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J. Neuroeng. Rehabil. 2015;12:23.CrossRefPubMedPubMedCentral Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J. Neuroeng. Rehabil. 2015;12:23.CrossRefPubMedPubMedCentral
23.
go back to reference Ding Y, Panizzolo FA, Siviy CJ, Malcolm P, Galiana I, Holt KG, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. J Neuroeng Rehabil. 2016;13:87.CrossRefPubMedPubMedCentral Ding Y, Panizzolo FA, Siviy CJ, Malcolm P, Galiana I, Holt KG, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. J Neuroeng Rehabil. 2016;13:87.CrossRefPubMedPubMedCentral
24.
go back to reference Galle S, Malcolm P, Collins SH, De Clercq D. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. J. Neuroeng. Rehabil. 2017;14:35.CrossRefPubMedPubMedCentral Galle S, Malcolm P, Collins SH, De Clercq D. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. J. Neuroeng. Rehabil. 2017;14:35.CrossRefPubMedPubMedCentral
26.
go back to reference Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS One. 2013;8:e56137.CrossRefPubMedPubMedCentral Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS One. 2013;8:e56137.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Quinlivan BT, Lee S, Malcolm P, Rossi DM, Grimmer M, Siviy C, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci Robot. 2017;2:eaah4416.CrossRef Quinlivan BT, Lee S, Malcolm P, Rossi DM, Grimmer M, Siviy C, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci Robot. 2017;2:eaah4416.CrossRef
29.
go back to reference Panizzolo FA, Galiana I, Asbeck AT, Siviy C, Schmidt K, Holt KG, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil. 2016;13:43.CrossRefPubMedPubMedCentral Panizzolo FA, Galiana I, Asbeck AT, Siviy C, Schmidt K, Holt KG, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil. 2016;13:43.CrossRefPubMedPubMedCentral
30.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23:5–13.CrossRefPubMed Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23:5–13.CrossRefPubMed
31.
go back to reference Collins SH, Jackson RW. Inducing self-selected human engagement in robotic locomotion training. Seattle: ICORR; 2013.CrossRef Collins SH, Jackson RW. Inducing self-selected human engagement in robotic locomotion training. Seattle: ICORR; 2013.CrossRef
32.
go back to reference Galle S, Malcolm P, Derave W, De Clercq D. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton. Eur J Appl Physiol. 2014. Galle S, Malcolm P, Derave W, De Clercq D. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton. Eur J Appl Physiol. 2014.
33.
go back to reference Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015;119:541–57.CrossRefPubMed Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015;119:541–57.CrossRefPubMed
34.
go back to reference Galle S, Malcolm P, Derave W, De Clercq D. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations. Gait Posture. 2015;41:246–51.CrossRefPubMed Galle S, Malcolm P, Derave W, De Clercq D. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations. Gait Posture. 2015;41:246–51.CrossRefPubMed
35.
go back to reference Koller JR, Jacobs DA, Ferris DP, Remy CD. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J. Neuroeng. Rehabil. 2015;12:97.CrossRefPubMedPubMedCentral Koller JR, Jacobs DA, Ferris DP, Remy CD. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J. Neuroeng. Rehabil. 2015;12:97.CrossRefPubMedPubMedCentral
36.
go back to reference Mooney LM, Herr HM. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J. Neuroeng. Rehabil. J NeuroEng Rehabil. 2016;13:4.CrossRefPubMedPubMedCentral Mooney LM, Herr HM. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J. Neuroeng. Rehabil. J NeuroEng Rehabil. 2016;13:4.CrossRefPubMedPubMedCentral
37.
39.
go back to reference Gordon K, Ferris D. Learning to walk with a robotic ankle exoskeleton. J Biomech. 2007;40:2636–44.CrossRefPubMed Gordon K, Ferris D. Learning to walk with a robotic ankle exoskeleton. J Biomech. 2007;40:2636–44.CrossRefPubMed
40.
go back to reference Kao P-C, Lewis CL, Ferris DP. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech. 2010;43:203–9.CrossRefPubMed Kao P-C, Lewis CL, Ferris DP. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech. 2010;43:203–9.CrossRefPubMed
43.
go back to reference Malcolm P, Quesada RE, Caputo JM, Collins SH. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. J Neuroeng Rehabil. 2015;12:14.CrossRef Malcolm P, Quesada RE, Caputo JM, Collins SH. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. J Neuroeng Rehabil. 2015;12:14.CrossRef
44.
go back to reference Galle S, Malcolm P, Derave W, De Clercq D. Adaptation to walking with an exoskeleton that assists ankle extension. Gait Posture. 2013;38:495–9.CrossRefPubMed Galle S, Malcolm P, Derave W, De Clercq D. Adaptation to walking with an exoskeleton that assists ankle extension. Gait Posture. 2013;38:495–9.CrossRefPubMed
45.
go back to reference Brockway JM. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987;41:463–71.PubMed Brockway JM. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987;41:463–71.PubMed
46.
go back to reference Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22:597–610.CrossRefPubMed Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22:597–610.CrossRefPubMed
47.
go back to reference Stanhope SJ, Kepple TM, McGuire DA, Roman NL. Kinematic-based technique for event time determination during gait. Med Biol Eng Comput. 1990;28:355–60.CrossRefPubMed Stanhope SJ, Kepple TM, McGuire DA, Roman NL. Kinematic-based technique for event time determination during gait. Med Biol Eng Comput. 1990;28:355–60.CrossRefPubMed
48.
go back to reference Waters RL, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am. 1976;58:42–6.CrossRefPubMed Waters RL, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am. 1976;58:42–6.CrossRefPubMed
49.
go back to reference Platts MM, Rafferty D, Paul L. Metabolic cost of overground gait in younger stroke patients and healthy controls. Med Sci Sports Exerc. 2006;38:1041–6.CrossRefPubMed Platts MM, Rafferty D, Paul L. Metabolic cost of overground gait in younger stroke patients and healthy controls. Med Sci Sports Exerc. 2006;38:1041–6.CrossRefPubMed
51.
go back to reference Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol Company of Biologists. 2008;211:1402–13.CrossRef Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol Company of Biologists. 2008;211:1402–13.CrossRef
52.
go back to reference Long AW, Roemmich RT, Bastian AJ. Blocking trial-by-trial error correction does not interfere with motor learning in human walking. J Neurophysiol. 2016;115:2341–8.CrossRefPubMedPubMedCentral Long AW, Roemmich RT, Bastian AJ. Blocking trial-by-trial error correction does not interfere with motor learning in human walking. J Neurophysiol. 2016;115:2341–8.CrossRefPubMedPubMedCentral
53.
go back to reference Hoogkamer W, Bruijn SM, Duysens J. Stride length asymmetry in split-belt locomotion. Gait Posture. 2014;39:652–4.CrossRefPubMed Hoogkamer W, Bruijn SM, Duysens J. Stride length asymmetry in split-belt locomotion. Gait Posture. 2014;39:652–4.CrossRefPubMed
54.
go back to reference Bobbert MF, de GWW, Jonk JN, LJR C. Explanation of the bilateral deficit in human vertical squat jumping. J Appl Physiol. 2006;100:493–9.CrossRefPubMed Bobbert MF, de GWW, Jonk JN, LJR C. Explanation of the bilateral deficit in human vertical squat jumping. J Appl Physiol. 2006;100:493–9.CrossRefPubMed
Metadata
Title
Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance
Authors
Philippe Malcolm
Samuel Galle
Pieter Van den Berghe
Dirk De Clercq
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0381-z

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue