Skip to main content
Top
Published in: Digestive Diseases and Sciences 8/2018

01-08-2018 | Review

Origins of Metaplasia in Barrett’s Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease?

Authors: Wei Zhang, David H. Wang

Published in: Digestive Diseases and Sciences | Issue 8/2018

Login to get access

Abstract

The incidence of esophageal adenocarcinoma has been increasing in Western countries over the past several decades. Though Barrett’s esophagus, in which the normal esophageal squamous epithelium is replaced with metaplastic intestinalized columnar cells due to chronic damage from gastroesophageal reflux, is accepted as the requisite precursor lesion for esophageal adenocarcinoma, the Barrett’s esophagus cell of origin and the molecular mechanism underlying esophageal epithelial metaplasia remain controversial. Much effort has been dedicated towards identifying the Barrett’s esophagus cell of origin since this could lead to more effective prevention and treatment strategies for both Barrett’s esophagus and esophageal adenocarcinoma. Previously, it was hypothesized that terminally differentiated esophageal squamous cells might undergo direct conversion into specialized intestinal columnar cells via the process of transdifferentiation. However, there is increasing evidence that stem and/or progenitor cells are molecularly reprogrammed through the process of transcommitment to differentiate into the columnar cell lineages that characterize Barrett’s esophagus. Given that Barrett’s esophagus originates at the gastroesophageal junction, the boundary between the distal esophagus and gastric cardia, potential sources of these stem and/or progenitor cells include columnar cells from the squamocolumnar junction or neighboring gastric cardia, native esophageal squamous cells, native esophageal cuboidal or columnar cells from submucosal glands or ducts, or circulating bone marrow-derived cells. In this review, we focus on native esophageal specific stem and/or progenitor cells and detail molecular mediators of transcommitment based on recent insights gained from novel mouse models and clinical observations from patients.
Literature
3.
go back to reference Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology.. 2011;140:e18–e52. (quiz e13).CrossRefPubMedPubMedCentral Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology.. 2011;140:e18–e52. (quiz e13).CrossRefPubMedPubMedCentral
4.
go back to reference Solaymani-Dodaran M, Logan RF, West J, Card T, Coupland C. Risk of oesophageal cancer in Barrett’s oesophagus and gastro-oesophageal reflux. Gut.. 2004;53:1070–1074.CrossRefPubMedPubMedCentral Solaymani-Dodaran M, Logan RF, West J, Card T, Coupland C. Risk of oesophageal cancer in Barrett’s oesophagus and gastro-oesophageal reflux. Gut.. 2004;53:1070–1074.CrossRefPubMedPubMedCentral
5.
go back to reference Spechler SJ, Fitzgerald RC, Prasad GA, Wang KK. History, molecular mechanisms, and endoscopic treatment of Barrett’s esophagus. Gastroenterology.. 2010;138:854–869.CrossRefPubMedPubMedCentral Spechler SJ, Fitzgerald RC, Prasad GA, Wang KK. History, molecular mechanisms, and endoscopic treatment of Barrett’s esophagus. Gastroenterology.. 2010;138:854–869.CrossRefPubMedPubMedCentral
6.
go back to reference Xian W, Ho KY, Crum CP, McKeon F. Cellular origin of Barrett’s esophagus: controversy and therapeutic implications. Gastroenterology.. 2012;142:1424–1430.CrossRefPubMed Xian W, Ho KY, Crum CP, McKeon F. Cellular origin of Barrett’s esophagus: controversy and therapeutic implications. Gastroenterology.. 2012;142:1424–1430.CrossRefPubMed
7.
go back to reference Eberhard D, Tosh D. Transdifferentiation and metaplasia as a paradigm for understanding development and disease. Cell Mol Life Sci.. 2008;65:33–40.CrossRefPubMed Eberhard D, Tosh D. Transdifferentiation and metaplasia as a paradigm for understanding development and disease. Cell Mol Life Sci.. 2008;65:33–40.CrossRefPubMed
8.
go back to reference Wang DH, Souza RF. Transcommitment: paving the way to Barrett’s metaplasia. Adv Exp Med Biol.. 2016;908:183–212.CrossRefPubMed Wang DH, Souza RF. Transcommitment: paving the way to Barrett’s metaplasia. Adv Exp Med Biol.. 2016;908:183–212.CrossRefPubMed
9.
go back to reference Stairs DB, Nakagawa H, Klein-Szanto A, et al. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS One.. 2008;3:e3534.CrossRefPubMedPubMedCentral Stairs DB, Nakagawa H, Klein-Szanto A, et al. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS One.. 2008;3:e3534.CrossRefPubMedPubMedCentral
10.
go back to reference Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP. Experimental columnar metaplasia in the canine oesophagus. Br J Surg.. 1988;75:113–115.CrossRefPubMed Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP. Experimental columnar metaplasia in the canine oesophagus. Br J Surg.. 1988;75:113–115.CrossRefPubMed
11.
go back to reference Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus.. 2008;21:43–50.CrossRefPubMed Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus.. 2008;21:43–50.CrossRefPubMed
12.
go back to reference Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of barrett-like metaplasia. Cancer Cell.. 2012;21:36–51.CrossRefPubMedPubMedCentral Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of barrett-like metaplasia. Cancer Cell.. 2012;21:36–51.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Hutchinson L, Stenstrom B, Chen D, et al. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev.. 2011;20:11–17.CrossRefPubMed Hutchinson L, Stenstrom B, Chen D, et al. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev.. 2011;20:11–17.CrossRefPubMed
16.
go back to reference Shields HM, Zwas F, Antonioli DA, Doos WG, Kim S, Spechler SJ. Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett’s epithelium. Dig Dis Sci.. 1993;38:97–108.CrossRefPubMed Shields HM, Zwas F, Antonioli DA, Doos WG, Kim S, Spechler SJ. Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett’s epithelium. Dig Dis Sci.. 1993;38:97–108.CrossRefPubMed
17.
go back to reference Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS. Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology.. 1997;112:760–765.CrossRefPubMed Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS. Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology.. 1997;112:760–765.CrossRefPubMed
18.
go back to reference Chen X, Qin R, Liu B, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol.. 2008;8:1.CrossRefPubMedPubMedCentral Chen X, Qin R, Liu B, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol.. 2008;8:1.CrossRefPubMedPubMedCentral
19.
go back to reference Yu WY, Slack JM, Tosh D. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol.. 2005;284:157–170.CrossRefPubMed Yu WY, Slack JM, Tosh D. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol.. 2005;284:157–170.CrossRefPubMed
20.
go back to reference Epperly MW, Guo H, Shen H, et al. Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiat Res.. 2004;162:233–240.CrossRefPubMed Epperly MW, Guo H, Shen H, et al. Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiat Res.. 2004;162:233–240.CrossRefPubMed
21.
go back to reference Kalabis J, Oyama K, Okawa T, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Investig.. 2008;118:3860–3869.PubMed Kalabis J, Oyama K, Okawa T, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Investig.. 2008;118:3860–3869.PubMed
22.
go back to reference Epperly MW, Shen H, Jefferson M, Greenberger JS. In vitro differentiation capacity of esophageal progenitor cells with capacity for homing and repopulation of the ionizing irradiation-damaged esophagus. Vivo.. 2004;18:675–685. Epperly MW, Shen H, Jefferson M, Greenberger JS. In vitro differentiation capacity of esophageal progenitor cells with capacity for homing and repopulation of the ionizing irradiation-damaged esophagus. Vivo.. 2004;18:675–685.
23.
go back to reference DeWard AD, Cramer J, Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep.. 2014;9:701–711.CrossRefPubMedPubMedCentral DeWard AD, Cramer J, Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep.. 2014;9:701–711.CrossRefPubMedPubMedCentral
24.
go back to reference Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells.. 2007;25:313–318.CrossRefPubMed Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells.. 2007;25:313–318.CrossRefPubMed
25.
go back to reference Doupe DP, Alcolea MP, Roshan A, et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science.. 2012;337:1091–1093.CrossRefPubMedPubMedCentral Doupe DP, Alcolea MP, Roshan A, et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science.. 2012;337:1091–1093.CrossRefPubMedPubMedCentral
26.
go back to reference Giroux V, Lento AA, Islam M, et al. Long-lived keratin 15 + esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Investig.. 2017;127:2378–2391.CrossRefPubMed Giroux V, Lento AA, Islam M, et al. Long-lived keratin 15 + esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Investig.. 2017;127:2378–2391.CrossRefPubMed
27.
go back to reference Barbera M, di Pietro M, Walker E, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut.. 2015;64:11–19.CrossRefPubMed Barbera M, di Pietro M, Walker E, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut.. 2015;64:11–19.CrossRefPubMed
28.
go back to reference Seery JP, Watt FM. Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol. 2000;10:1447–1450.CrossRefPubMed Seery JP, Watt FM. Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol. 2000;10:1447–1450.CrossRefPubMed
29.
go back to reference Jeong Y, Rhee H, Martin S, et al. Identification and genetic manipulation of human and mouse oesophageal stem cells. Gut.. 2016;65:1077–1086.CrossRefPubMed Jeong Y, Rhee H, Martin S, et al. Identification and genetic manipulation of human and mouse oesophageal stem cells. Gut.. 2016;65:1077–1086.CrossRefPubMed
30.
go back to reference Jiang M, Li H, Zhang Y, et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature.. 2017;550:529–533.CrossRefPubMedPubMedCentral Jiang M, Li H, Zhang Y, et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature.. 2017;550:529–533.CrossRefPubMedPubMedCentral
31.
go back to reference Garman KS, Kruger L, Thomas S, et al. Ductal metaplasia in oesophageal submucosal glands is associated with inflammation and oesophageal adenocarcinoma. Histopathology.. 2015;67:771–782.CrossRefPubMedPubMedCentral Garman KS, Kruger L, Thomas S, et al. Ductal metaplasia in oesophageal submucosal glands is associated with inflammation and oesophageal adenocarcinoma. Histopathology.. 2015;67:771–782.CrossRefPubMedPubMedCentral
33.
go back to reference Coad RA, Woodman AC, Warner PJ, Barr H, Wright NA, Shepherd NA. On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol.. 2005;206:388–394.CrossRefPubMed Coad RA, Woodman AC, Warner PJ, Barr H, Wright NA, Shepherd NA. On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol.. 2005;206:388–394.CrossRefPubMed
34.
go back to reference Leedham SJ, Preston SL, McDonald SA, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut.. 2008;57:1041–1048.CrossRefPubMedPubMedCentral Leedham SJ, Preston SL, McDonald SA, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut.. 2008;57:1041–1048.CrossRefPubMedPubMedCentral
35.
go back to reference von Furstenberg RJ, Li J, Stolarchuk C, et al. Porcine esophageal submucosal gland culture model shows capacity for proliferation and differentiation. Cell Mol Gastroenterol Hepatol. 2017;4:385–404.CrossRef von Furstenberg RJ, Li J, Stolarchuk C, et al. Porcine esophageal submucosal gland culture model shows capacity for proliferation and differentiation. Cell Mol Gastroenterol Hepatol. 2017;4:385–404.CrossRef
36.
go back to reference Yamamoto Y, Wang X, Bertrand D, et al. Mutational spectrum of Barrett’s stem cells suggests paths to initiation of a precancerous lesion. Nat Commun.. 2016;7:10380.CrossRefPubMedPubMedCentral Yamamoto Y, Wang X, Bertrand D, et al. Mutational spectrum of Barrett’s stem cells suggests paths to initiation of a precancerous lesion. Nat Commun.. 2016;7:10380.CrossRefPubMedPubMedCentral
37.
go back to reference Que J, Okubo T, Goldenring JR, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development.. 2007;134:2521–2531.CrossRefPubMedPubMedCentral Que J, Okubo T, Goldenring JR, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development.. 2007;134:2521–2531.CrossRefPubMedPubMedCentral
38.
go back to reference Blache P, van de Wetering M, Duluc I, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol.. 2004;166:37–47.CrossRefPubMedPubMedCentral Blache P, van de Wetering M, Duluc I, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol.. 2004;166:37–47.CrossRefPubMedPubMedCentral
39.
go back to reference Clemons NJ, Wang DH, Croagh D, et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol.. 2012;303:G1335–G1346.CrossRefPubMed Clemons NJ, Wang DH, Croagh D, et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol.. 2012;303:G1335–G1346.CrossRefPubMed
40.
go back to reference Wang DH, Clemons NJ, Miyashita T, et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology.. 2010;138:1810–1822.CrossRefPubMedPubMedCentral Wang DH, Clemons NJ, Miyashita T, et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology.. 2010;138:1810–1822.CrossRefPubMedPubMedCentral
41.
go back to reference Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature.. 1997;386:84–87.CrossRefPubMed Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature.. 1997;386:84–87.CrossRefPubMed
42.
go back to reference Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS One.. 2011;6:e18280.CrossRefPubMedPubMedCentral Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS One.. 2011;6:e18280.CrossRefPubMedPubMedCentral
43.
go back to reference Wang DH, Tiwari A, Kim ME, et al. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia. J Clin Investig.. 2014;124:3767–3780.CrossRefPubMed Wang DH, Tiwari A, Kim ME, et al. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia. J Clin Investig.. 2014;124:3767–3780.CrossRefPubMed
44.
go back to reference Tamagawa Y, Ishimura N, Uno G, Yuki T, Kazumori H, Ishihara S, Amano Y, and Kinoshita Y. Notch signaling pathway and Cdx2 expression in the development of Barrett’s esophagus. Lab Invest. 2012;92:896–909.CrossRefPubMed Tamagawa Y, Ishimura N, Uno G, Yuki T, Kazumori H, Ishihara S, Amano Y, and Kinoshita Y. Notch signaling pathway and Cdx2 expression in the development of Barrett’s esophagus. Lab Invest. 2012;92:896–909.CrossRefPubMed
45.
go back to reference Tamagawa Y, Ishimura N, Uno G, et al. Bile acids induce Delta-like 1 expression via Cdx2-dependent pathway in the development of Barrett’s esophagus. Lab Invest.. 2016;96:325–337.CrossRefPubMed Tamagawa Y, Ishimura N, Uno G, et al. Bile acids induce Delta-like 1 expression via Cdx2-dependent pathway in the development of Barrett’s esophagus. Lab Invest.. 2016;96:325–337.CrossRefPubMed
46.
go back to reference Menke V, van Es JH, de Lau W, et al. Conversion of metaplastic Barrett’s epithelium into post-mitotic goblet cells by gamma-secretase inhibition. Dis Model Mech.. 2010;3:104–110.CrossRefPubMed Menke V, van Es JH, de Lau W, et al. Conversion of metaplastic Barrett’s epithelium into post-mitotic goblet cells by gamma-secretase inhibition. Dis Model Mech.. 2010;3:104–110.CrossRefPubMed
47.
go back to reference Vega ME, Giroux V, Natsuizaka M, et al. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett’s-like metaplasia via KLF4. Cell Cycle.. 2014;13:3857–3866.CrossRefPubMed Vega ME, Giroux V, Natsuizaka M, et al. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett’s-like metaplasia via KLF4. Cell Cycle.. 2014;13:3857–3866.CrossRefPubMed
48.
go back to reference Colleypriest BJ, Burke ZD, Griffiths LP, et al. Hnf4alpha is a key gene that can generate columnar metaplasia in oesophageal epithelium. Differentiation.. 2017;93:39–49.CrossRefPubMedPubMedCentral Colleypriest BJ, Burke ZD, Griffiths LP, et al. Hnf4alpha is a key gene that can generate columnar metaplasia in oesophageal epithelium. Differentiation.. 2017;93:39–49.CrossRefPubMedPubMedCentral
Metadata
Title
Origins of Metaplasia in Barrett’s Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease?
Authors
Wei Zhang
David H. Wang
Publication date
01-08-2018
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 8/2018
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-018-5069-5

Other articles of this Issue 8/2018

Digestive Diseases and Sciences 8/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.