Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

Authors: Min Zhang, Yang D Chai, Jeffrey Brumbaugh, Xiaojun Liu, Ramin Rabii, Sizhe Feng, Kaori Misuno, Diana Messadi, Shen Hu

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes.

Methods

UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test.

Results

Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2.

Conclusions

Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D: The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012, 53 (3): 421-436. 10.1016/j.freeradbiomed.2012.05.006.CrossRefPubMed Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D: The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012, 53 (3): 421-436. 10.1016/j.freeradbiomed.2012.05.006.CrossRefPubMed
2.
go back to reference Tong X, Zhao F, Thompson CB: The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 2009, 19 (1): 32-37. 10.1016/j.gde.2009.01.002.CrossRefPubMedPubMedCentral Tong X, Zhao F, Thompson CB: The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 2009, 19 (1): 32-37. 10.1016/j.gde.2009.01.002.CrossRefPubMedPubMedCentral
3.
go back to reference Boros LG, Puigjaner J, Cascante M, Lee W-NP, Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P, Melvin WS, Schirmer WJ: Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation. Cancer Res. 1997, 57 (19): 4242-4248.PubMed Boros LG, Puigjaner J, Cascante M, Lee W-NP, Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P, Melvin WS, Schirmer WJ: Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation. Cancer Res. 1997, 57 (19): 4242-4248.PubMed
4.
go back to reference Coy J, Dressler D, Wilde J, Schubert P: Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 2005, 51 (5–6): 257-273.PubMed Coy J, Dressler D, Wilde J, Schubert P: Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 2005, 51 (5–6): 257-273.PubMed
5.
go back to reference Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF: Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 2006, 94 (4): 578-585. 10.1038/sj.bjc.6602962.CrossRefPubMedPubMedCentral Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF: Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 2006, 94 (4): 578-585. 10.1038/sj.bjc.6602962.CrossRefPubMedPubMedCentral
6.
go back to reference Grimm M, Hoefert S, Luz O, Reinert S, Polligkeit J: Transketolase-like protein 1 expression in recurrent oral squamous cell carcinoma after curative resection: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013, 116 (3): e173-e178. 10.1016/j.oooo.2011.12.022.CrossRefPubMed Grimm M, Hoefert S, Luz O, Reinert S, Polligkeit J: Transketolase-like protein 1 expression in recurrent oral squamous cell carcinoma after curative resection: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013, 116 (3): e173-e178. 10.1016/j.oooo.2011.12.022.CrossRefPubMed
7.
go back to reference Zerilli M, Amato MC, Martorana A, Cabibi D, Coy JF, Cappello F, Pompei G, Russo A, Giordano C, Rodolico V: Increased expression of transketolase-like-1 in papillary thyroid carcinomas smaller than 1.5 cm in diameter is associated with lymph-node metastases. Cancer. 2008, 113 (5): 936-944. 10.1002/cncr.23683.CrossRefPubMed Zerilli M, Amato MC, Martorana A, Cabibi D, Coy JF, Cappello F, Pompei G, Russo A, Giordano C, Rodolico V: Increased expression of transketolase-like-1 in papillary thyroid carcinomas smaller than 1.5 cm in diameter is associated with lymph-node metastases. Cancer. 2008, 113 (5): 936-944. 10.1002/cncr.23683.CrossRefPubMed
8.
go back to reference Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA: TKTL1 Is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1a stabilization. Clin Cancer Res. 2010, 16 (3): 857-866. 10.1158/1078-0432.CCR-09-2604.CrossRefPubMedPubMedCentral Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA: TKTL1 Is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1a stabilization. Clin Cancer Res. 2010, 16 (3): 857-866. 10.1158/1078-0432.CCR-09-2604.CrossRefPubMedPubMedCentral
9.
go back to reference Xu X, zur Hausen A, Coy JF, Löchelt M: Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 2009, 124 (6): 1330-1337. 10.1002/ijc.24078.CrossRefPubMed Xu X, zur Hausen A, Coy JF, Löchelt M: Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 2009, 124 (6): 1330-1337. 10.1002/ijc.24078.CrossRefPubMed
10.
go back to reference Wanka C, Steinbach JP, Rieger J: Tp53-Induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by Up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012, 287 (40): 33436-33446. 10.1074/jbc.M112.384578.CrossRefPubMedPubMedCentral Wanka C, Steinbach JP, Rieger J: Tp53-Induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by Up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012, 287 (40): 33436-33446. 10.1074/jbc.M112.384578.CrossRefPubMedPubMedCentral
11.
go back to reference Dzeja P, Terzic A: Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci. 2009, 10 (4): 1729-1772. 10.3390/ijms10041729.CrossRefPubMedPubMedCentral Dzeja P, Terzic A: Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci. 2009, 10 (4): 1729-1772. 10.3390/ijms10041729.CrossRefPubMedPubMedCentral
12.
go back to reference Noma T: Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest. 2005, 52 (3,4): 127-136. 10.2152/jmi.52.127.CrossRefPubMed Noma T: Dynamics of nucleotide metabolism as a supporter of life phenomena. J Med Invest. 2005, 52 (3,4): 127-136. 10.2152/jmi.52.127.CrossRefPubMed
13.
go back to reference Bruns GA, Regina VM: Adenylate kinase 2, a mitochondrial enzyme. Biochem Genet. 1977, 15 (5–6): 477-486.CrossRefPubMed Bruns GA, Regina VM: Adenylate kinase 2, a mitochondrial enzyme. Biochem Genet. 1977, 15 (5–6): 477-486.CrossRefPubMed
14.
go back to reference Köhler C, Gahm A, Noma T, Nakazawa A, Orrenius S, Zhivotovsky B: Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett. 1999, 447 (1): 10-12. 10.1016/S0014-5793(99)00251-3.CrossRefPubMed Köhler C, Gahm A, Noma T, Nakazawa A, Orrenius S, Zhivotovsky B: Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett. 1999, 447 (1): 10-12. 10.1016/S0014-5793(99)00251-3.CrossRefPubMed
15.
go back to reference Lagresle-Peyrou C, Six EM, Picard C, Rieux-Laucat F, Michel V, Ditadi A, Demerens-de Chappedelaine C, Morillon E, Valensi F, Simon-Stoos KL, Mullikin JC, Noroski LM, Besse C, Wulffraat NM, Ferster A, Abecasis MM, Calvo F, Petit C, Candotti F, Abel L, Fischer A, Cavazzana-Calvo M: Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet. 2009, 41 (1): 106-111. 10.1038/ng.278.CrossRefPubMed Lagresle-Peyrou C, Six EM, Picard C, Rieux-Laucat F, Michel V, Ditadi A, Demerens-de Chappedelaine C, Morillon E, Valensi F, Simon-Stoos KL, Mullikin JC, Noroski LM, Besse C, Wulffraat NM, Ferster A, Abecasis MM, Calvo F, Petit C, Candotti F, Abel L, Fischer A, Cavazzana-Calvo M: Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet. 2009, 41 (1): 106-111. 10.1038/ng.278.CrossRefPubMed
16.
go back to reference Pannicke U, Hönig M, Hess I, Friesen C, Holzmann K, Rump EM, Barth TF, Rojewski MT, Schulz A, Boehm T, Friedrich W, Schwarz K: Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet. 2009, 41 (1): 101-105. 10.1038/ng.265.CrossRefPubMed Pannicke U, Hönig M, Hess I, Friesen C, Holzmann K, Rump EM, Barth TF, Rojewski MT, Schulz A, Boehm T, Friedrich W, Schwarz K: Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet. 2009, 41 (1): 101-105. 10.1038/ng.265.CrossRefPubMed
17.
go back to reference Fujisawa K, Murakami R, Horiguchi T, Noma T: Adenylate kinase isozyme 2 is essential for growth and development of Drosophila melanogaster. Comp Biochem Physiol B Biochem Mol Biol. 2009, 153 (1): 29-38. 10.1016/j.cbpb.2009.01.006.CrossRefPubMed Fujisawa K, Murakami R, Horiguchi T, Noma T: Adenylate kinase isozyme 2 is essential for growth and development of Drosophila melanogaster. Comp Biochem Physiol B Biochem Mol Biol. 2009, 153 (1): 29-38. 10.1016/j.cbpb.2009.01.006.CrossRefPubMed
18.
go back to reference Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A: Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One. 2011, 6 (4): e19300-10.1371/journal.pone.0019300.CrossRefPubMedPubMedCentral Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A: Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One. 2011, 6 (4): e19300-10.1371/journal.pone.0019300.CrossRefPubMedPubMedCentral
19.
go back to reference Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S: HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One. 2013, 8 (7): e68376-10.1371/journal.pone.0068376.CrossRefPubMedPubMedCentral Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S: HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One. 2013, 8 (7): e68376-10.1371/journal.pone.0068376.CrossRefPubMedPubMedCentral
20.
go back to reference Greengard O, Head JF, Goldberg SL: Uridine kinase, adenylate kinase, and guanase in human lung tumors. Cancer Res. 1980, 40 (7): 2295-2299.PubMed Greengard O, Head JF, Goldberg SL: Uridine kinase, adenylate kinase, and guanase in human lung tumors. Cancer Res. 1980, 40 (7): 2295-2299.PubMed
21.
go back to reference Nelson BD, Kabir F: Adenylate kinase is a source of ATP for tumor mitochondrial hexokinase. Biochim Biophys Acta Gen Subj. 1985, 841 (2): 195-200. 10.1016/0304-4165(85)90021-2.CrossRef Nelson BD, Kabir F: Adenylate kinase is a source of ATP for tumor mitochondrial hexokinase. Biochim Biophys Acta Gen Subj. 1985, 841 (2): 195-200. 10.1016/0304-4165(85)90021-2.CrossRef
22.
go back to reference Nakayama S, Sasaki A, Mese H, Alcalde RE, Matsumura T: Establishment of high and Low metastasis cell lines derived from a human tongue squamous cell carcinoma. Invasion Metastasis. 1998, 18 (5–6): 219-228.PubMed Nakayama S, Sasaki A, Mese H, Alcalde RE, Matsumura T: Establishment of high and Low metastasis cell lines derived from a human tongue squamous cell carcinoma. Invasion Metastasis. 1998, 18 (5–6): 219-228.PubMed
23.
go back to reference Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB: Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1[alpha]-induced metabolic reprograming. Oncogene. 2010, 29 (20): 2962-2972. 10.1038/onc.2010.67.CrossRefPubMedPubMedCentral Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB: Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1[alpha]-induced metabolic reprograming. Oncogene. 2010, 29 (20): 2962-2972. 10.1038/onc.2010.67.CrossRefPubMedPubMedCentral
24.
go back to reference Wang W, Guan KL: AMP-activated protein kinase and cancer. Acta Physiol. 2009, 196 (1): 55-63. 10.1111/j.1748-1716.2009.01980.x.CrossRef Wang W, Guan KL: AMP-activated protein kinase and cancer. Acta Physiol. 2009, 196 (1): 55-63. 10.1111/j.1748-1716.2009.01980.x.CrossRef
25.
go back to reference Carling D, Mayer FV, Sanders MJ, Gamblin SJ: AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol. 2011, 7 (8): 512-518. 10.1038/nchembio.610.CrossRefPubMed Carling D, Mayer FV, Sanders MJ, Gamblin SJ: AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol. 2011, 7 (8): 512-518. 10.1038/nchembio.610.CrossRefPubMed
26.
go back to reference Carling D, Thornton C, Woods A, Sanders MJ: AMP-activated protein kinase: new regulation, new roles?. Biochem J. 2012, 445 (1): 11-27. 10.1042/BJ20120546.CrossRefPubMed Carling D, Thornton C, Woods A, Sanders MJ: AMP-activated protein kinase: new regulation, new roles?. Biochem J. 2012, 445 (1): 11-27. 10.1042/BJ20120546.CrossRefPubMed
27.
go back to reference Erin E, Mendoza MGP, Kong X, Leeper DB, Caro J, Limesand KH, Burd R: Control of glycolytic flux by AMP-activated protein kinase in tumor cells adapted to Low pH. Transl Oncol. 2012, 5 (3): 208-216. 10.1593/tlo.11319.CrossRef Erin E, Mendoza MGP, Kong X, Leeper DB, Caro J, Limesand KH, Burd R: Control of glycolytic flux by AMP-activated protein kinase in tumor cells adapted to Low pH. Transl Oncol. 2012, 5 (3): 208-216. 10.1593/tlo.11319.CrossRef
28.
go back to reference Jeon S-M, Chandel NS, Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012, 485 (7400): 661-665. 10.1038/nature11066.CrossRefPubMedPubMedCentral Jeon S-M, Chandel NS, Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012, 485 (7400): 661-665. 10.1038/nature11066.CrossRefPubMedPubMedCentral
Metadata
Title
Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes
Authors
Min Zhang
Yang D Chai
Jeffrey Brumbaugh
Xiaojun Liu
Ramin Rabii
Sizhe Feng
Kaori Misuno
Diana Messadi
Shen Hu
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-223

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine