Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Breast density and mode of detection in relation to breast cancer specific survival: a cohort study

Authors: Åsa Olsson, Hanna Sartor, Signe Borgquist, Sophia Zackrisson, Jonas Manjer

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

The aim of this study was to examine breast density in relation to breast cancer specific survival and to assess if this potential association was modified by mode of detection. An additional aim was to study whether the established association between mode of detection and survival is modified by breast density.

Methods

The study included 619 cases from a prospective cohort, The Malmö Diet and Cancer Study. Breast density estimated qualitatively, was analyzed in relation to breast cancer death, in non-symptomatic and symptomatic women, using Cox regression calculating hazard ratios (HR) with 95% confidence intervals. Adjustments were made in several steps for; diagnostic age, tumour size, axillary lymph node involvement, grade, hormone receptor status, body mass index (baseline), diagnostic period, use of hormone replacement therapy at diagnosis and mode of detection. Detection mode in relation to survival was analyzed stratified for breast density. Differences in HR following different adjustments were analyzed by Freedmans%.

Results

After adjustment for age and other prognostic factors, women with dense, as compared to fatty breasts, had an increased risk of breast cancer death, HR 2.56:1.07-6.11, with a statistically significant trend over density categories, p = 0.04. In the stratified analysis, the effect was less pronounced in non-symptomatic women, HR 2.04:0.49-8.49 as compared to symptomatic, HR 3.40:1.06-10.90. In the unadjusted model, symptomatic women had a higher risk of breast cancer death, regardless of breast density. Analyzed by Freedmans%, age, tumour size, lymph nodes, grade, diagnostic period, ER and PgR explained 55.5% of the observed differences in mortality between non-symptomatic and symptomatic cases. Additional adjustment for breast density caused only a minor change.

Conclusions

High breast density at diagnosis may be associated with decreased breast cancer survival. This association appears to be stronger in women with symptomatic cancers but breast density could not explain differences in survival according to detection mode.
Appendix
Available only for authorised users
Literature
1.
go back to reference McCormack VA, dos Santos SI: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006, 15 (6): 1159-1169. 10.1158/1055-9965.EPI-06-0034.CrossRefPubMed McCormack VA, dos Santos SI: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006, 15 (6): 1159-1169. 10.1158/1055-9965.EPI-06-0034.CrossRefPubMed
2.
go back to reference Buist DS, Porter PL, Lehman C, Taplin SH, White E: Factors contributing to mammography failure in women aged 40–49 years. J Natl Cancer Inst. 2004, 96 (19): 1432-1440. 10.1093/jnci/djh269.CrossRefPubMed Buist DS, Porter PL, Lehman C, Taplin SH, White E: Factors contributing to mammography failure in women aged 40–49 years. J Natl Cancer Inst. 2004, 96 (19): 1432-1440. 10.1093/jnci/djh269.CrossRefPubMed
3.
go back to reference Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, Geller BM, Abraham LA, Taplin SH, Dignan M, Cutter G, Ballard- Barbash R: Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003, 138 (3): 168-175. 10.7326/0003-4819-138-3-200302040-00008.CrossRefPubMed Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, Geller BM, Abraham LA, Taplin SH, Dignan M, Cutter G, Ballard- Barbash R: Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003, 138 (3): 168-175. 10.7326/0003-4819-138-3-200302040-00008.CrossRefPubMed
4.
go back to reference Olsen AH, Bihrmann K, Jensen MB, Vejborg I, Lynge E: Breast density and outcome of mammography screening: a cohort study. Br J Cancer. 2009, 100 (7): 1205-1208. 10.1038/sj.bjc.6604989.CrossRefPubMedPubMedCentral Olsen AH, Bihrmann K, Jensen MB, Vejborg I, Lynge E: Breast density and outcome of mammography screening: a cohort study. Br J Cancer. 2009, 100 (7): 1205-1208. 10.1038/sj.bjc.6604989.CrossRefPubMedPubMedCentral
5.
go back to reference Chiu SY, Duffy S, Yen AM, Tabar L, Smith RA, Chen HH: Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomarkers Prev. 2010, 19 (5): 1219-1228. 10.1158/1055-9965.EPI-09-1028.CrossRefPubMed Chiu SY, Duffy S, Yen AM, Tabar L, Smith RA, Chen HH: Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomarkers Prev. 2010, 19 (5): 1219-1228. 10.1158/1055-9965.EPI-09-1028.CrossRefPubMed
6.
go back to reference Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao M-S, Khokha R, Martin L, Boyd N: The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers & prevention, Cancer Epidemiol biomarkers and prevention. 2005, 14 (2): 343-349.CrossRef Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao M-S, Khokha R, Martin L, Boyd N: The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers & prevention, Cancer Epidemiol biomarkers and prevention. 2005, 14 (2): 343-349.CrossRef
7.
go back to reference Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S: Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010, 102 (16): 1224-1237. 10.1093/jnci/djq239.CrossRefPubMedPubMedCentral Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S: Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010, 102 (16): 1224-1237. 10.1093/jnci/djq239.CrossRefPubMedPubMedCentral
8.
go back to reference Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA: Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000, 11 (7): 653-662. 10.1023/A:1008926607428.CrossRefPubMed Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA: Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000, 11 (7): 653-662. 10.1023/A:1008926607428.CrossRefPubMed
9.
go back to reference Tamimi RM, Hankinson SE, Colditz GA, Byrne C: Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2005, 14 (11 Pt 1): 2641-2647.CrossRefPubMed Tamimi RM, Hankinson SE, Colditz GA, Byrne C: Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2005, 14 (11 Pt 1): 2641-2647.CrossRefPubMed
10.
go back to reference Lam PB, Vacek PM, Geller BM, Muss HB: The association of increased weight, body mass index, and tissue density with the risk of breast carcinoma in Vermont. Cancer. 2000, 89 (2): 369-375. 10.1002/1097-0142(20000715)89:2<369::AID-CNCR23>3.0.CO;2-J.CrossRefPubMed Lam PB, Vacek PM, Geller BM, Muss HB: The association of increased weight, body mass index, and tissue density with the risk of breast carcinoma in Vermont. Cancer. 2000, 89 (2): 369-375. 10.1002/1097-0142(20000715)89:2<369::AID-CNCR23>3.0.CO;2-J.CrossRefPubMed
11.
go back to reference Vacek PM, Geller BM: A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomarkers Prev. 2004, 13 (5): 715-722.PubMed Vacek PM, Geller BM: A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomarkers Prev. 2004, 13 (5): 715-722.PubMed
12.
go back to reference Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G: Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst. 2003, 95 (1): 30-37. 10.1093/jnci/95.1.30.CrossRefPubMed Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G: Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst. 2003, 95 (1): 30-37. 10.1093/jnci/95.1.30.CrossRefPubMed
13.
go back to reference Breast Cancer Screening. Edited by: HoCP IARC. 2002, Lyon(France) Breast Cancer Screening. Edited by: HoCP IARC. 2002, Lyon(France)
14.
go back to reference van Gils CH, Otten JD, Verbeek AL, Hendriks JH, Holland R: Effect of mammographic breast density on breast cancer screening performance: a study in Nijmegen, The Netherlands. J Epidemiol Community Health. 1998, 52 (4): 267-271. 10.1136/jech.52.4.267.CrossRefPubMedPubMedCentral van Gils CH, Otten JD, Verbeek AL, Hendriks JH, Holland R: Effect of mammographic breast density on breast cancer screening performance: a study in Nijmegen, The Netherlands. J Epidemiol Community Health. 1998, 52 (4): 267-271. 10.1136/jech.52.4.267.CrossRefPubMedPubMedCentral
15.
go back to reference Porter GJ, Evans AJ, Cornford EJ, Burrell HC, James JJ, Lee AH, Chakrabarti J: Influence of mammographic parenchymal pattern in screening-detected and interval invasive breast cancers on pathologic features, mammographic features, and patient survival. AJR Am J Roentgenol. 2007, 188 (3): 676-683. 10.2214/AJR.05.1950.CrossRefPubMed Porter GJ, Evans AJ, Cornford EJ, Burrell HC, James JJ, Lee AH, Chakrabarti J: Influence of mammographic parenchymal pattern in screening-detected and interval invasive breast cancers on pathologic features, mammographic features, and patient survival. AJR Am J Roentgenol. 2007, 188 (3): 676-683. 10.2214/AJR.05.1950.CrossRefPubMed
16.
go back to reference Gierach GL, Ichikawa L, Kerlikowske K, Brinton LA, Farhat GN, Vacek PM, Weaver DL, Schairer C, Taplin SH, Sherman ME: Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012, 104 (16): 1218-1227. 10.1093/jnci/djs327.CrossRefPubMedPubMedCentral Gierach GL, Ichikawa L, Kerlikowske K, Brinton LA, Farhat GN, Vacek PM, Weaver DL, Schairer C, Taplin SH, Sherman ME: Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012, 104 (16): 1218-1227. 10.1093/jnci/djs327.CrossRefPubMedPubMedCentral
17.
go back to reference Maskarinec G, Pagano IS, Little MA, Conroy SM, Park SY, Kolonel LN: Mammographic density as a predictor of breast cancer survival: the Multiethnic Cohort. Breast Cancer Res. 2013, 15 (1): R7-10.1186/bcr3378.CrossRefPubMedPubMedCentral Maskarinec G, Pagano IS, Little MA, Conroy SM, Park SY, Kolonel LN: Mammographic density as a predictor of breast cancer survival: the Multiethnic Cohort. Breast Cancer Res. 2013, 15 (1): R7-10.1186/bcr3378.CrossRefPubMedPubMedCentral
18.
go back to reference Joensuu H, Lehtimaki T, Holli K, Elomaa L, Turpeenniemi-Hujanen T, Kataja V, Anttila A, Lundin M, Isola J, Lundin J: Risk for distant recurrence of breast cancer detected by mammography screening or other methods. JAMA. 2004, 292 (9): 1064-1073. 10.1001/jama.292.9.1064.CrossRefPubMed Joensuu H, Lehtimaki T, Holli K, Elomaa L, Turpeenniemi-Hujanen T, Kataja V, Anttila A, Lundin M, Isola J, Lundin J: Risk for distant recurrence of breast cancer detected by mammography screening or other methods. JAMA. 2004, 292 (9): 1064-1073. 10.1001/jama.292.9.1064.CrossRefPubMed
19.
go back to reference Dawson SJ, Duffy SW, Blows FM, Driver KE, Provenzano E, LeQuesne J, Greenberg DC, Pharoah P, Caldas C, Wishart GC: Molecular characteristics of screen-detected vs symptomatic breast cancers and their impact on survival. Br J Cancer. 2009, 101 (8): 1338-1344. 10.1038/sj.bjc.6605317.CrossRefPubMedPubMedCentral Dawson SJ, Duffy SW, Blows FM, Driver KE, Provenzano E, LeQuesne J, Greenberg DC, Pharoah P, Caldas C, Wishart GC: Molecular characteristics of screen-detected vs symptomatic breast cancers and their impact on survival. Br J Cancer. 2009, 101 (8): 1338-1344. 10.1038/sj.bjc.6605317.CrossRefPubMedPubMedCentral
20.
go back to reference Wishart GC, Greenberg DC, Britton PD, Chou P, Brown CH, Purushotham AD, Duffy SW: Screen-detected vs symptomatic breast cancer: is improved survival due to stage migration alone?. Br J Cancer. 2008, 98 (11): 1741-1744. 10.1038/sj.bjc.6604368.CrossRefPubMedPubMedCentral Wishart GC, Greenberg DC, Britton PD, Chou P, Brown CH, Purushotham AD, Duffy SW: Screen-detected vs symptomatic breast cancer: is improved survival due to stage migration alone?. Br J Cancer. 2008, 98 (11): 1741-1744. 10.1038/sj.bjc.6604368.CrossRefPubMedPubMedCentral
21.
go back to reference Olsson A, Borgquist S, Butt S, Zackrisson S, Landberg G, Manjer J: Tumour-related factors and prognosis in breast cancer detected by screening. Br J Surg. 2012, 99 (1): 78-87. 10.1002/bjs.7757.CrossRefPubMed Olsson A, Borgquist S, Butt S, Zackrisson S, Landberg G, Manjer J: Tumour-related factors and prognosis in breast cancer detected by screening. Br J Surg. 2012, 99 (1): 78-87. 10.1002/bjs.7757.CrossRefPubMed
22.
go back to reference Berglund G, Elmstahl S, Janzon L, Larsson SA: The Malmo diet and cancer study, design and feasibility. J Intern Med. 1993, 233 (1): 45-51. 10.1111/j.1365-2796.1993.tb00647.x.CrossRefPubMed Berglund G, Elmstahl S, Janzon L, Larsson SA: The Malmo diet and cancer study, design and feasibility. J Intern Med. 1993, 233 (1): 45-51. 10.1111/j.1365-2796.1993.tb00647.x.CrossRefPubMed
23.
go back to reference Manjer J, Carlsson S, Elmstahl S, Gullberg B, Janzon L, Lindstrom M, Mattisson I, Berglund G: The Malmo diet and cancer study: representativity, cancer incidence and mortality in participants and non-participants. Eur J Cancer Prev. 2001, 10 (6): 489-499. 10.1097/00008469-200112000-00003.CrossRefPubMed Manjer J, Carlsson S, Elmstahl S, Gullberg B, Janzon L, Lindstrom M, Mattisson I, Berglund G: The Malmo diet and cancer study: representativity, cancer incidence and mortality in participants and non-participants. Eur J Cancer Prev. 2001, 10 (6): 489-499. 10.1097/00008469-200112000-00003.CrossRefPubMed
24.
go back to reference Zackrisson S: Non-attendance in breast cancer screening is associated with unfavourable socio-economic circumstances and advanced carcinoma. Int J Cancer. 2004, 108: 754-760. 10.1002/ijc.11622.CrossRefPubMed Zackrisson S: Non-attendance in breast cancer screening is associated with unfavourable socio-economic circumstances and advanced carcinoma. Int J Cancer. 2004, 108: 754-760. 10.1002/ijc.11622.CrossRefPubMed
26.
go back to reference  : World Health Organization. Histological typing of breast tumours. Second edition. Geneva, 1981. Ann Pathol. 1982, 2: 91-105.  : World Health Organization. Histological typing of breast tumours. Second edition. Geneva, 1981. Ann Pathol. 1982, 2: 91-105.
27.
go back to reference Elston CW, EIO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991, 19: 403-410. 10.1111/j.1365-2559.1991.tb00229.x.CrossRefPubMed Elston CW, EIO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991, 19: 403-410. 10.1111/j.1365-2559.1991.tb00229.x.CrossRefPubMed
28.
go back to reference Borgquist S, Djerbi S, Ponten F, Anagnostaki L, Goldman M, Gaber A, Manjer J, Landberg G, Jirstrom K: HMG-CoA reductase expression in breast cancer is associated with a less aggressive phenotype and influenced by anthropometric factors. Int J Cancer. 2008, 123 (5): 1146-1153. 10.1002/ijc.23597.CrossRefPubMed Borgquist S, Djerbi S, Ponten F, Anagnostaki L, Goldman M, Gaber A, Manjer J, Landberg G, Jirstrom K: HMG-CoA reductase expression in breast cancer is associated with a less aggressive phenotype and influenced by anthropometric factors. Int J Cancer. 2008, 123 (5): 1146-1153. 10.1002/ijc.23597.CrossRefPubMed
29.
go back to reference Bröst Cancer. Edited by: Jönsson P-E. 2009, Astra Zeneca AB Bröst Cancer. Edited by: Jönsson P-E. 2009, Astra Zeneca AB
31.
go back to reference Freedman LSGBI, Schatzkin A: Statistic validation of intermediate endpoints for chronic diseases. Stat Med. 1992, 11: 167-178. 10.1002/sim.4780110204.CrossRefPubMed Freedman LSGBI, Schatzkin A: Statistic validation of intermediate endpoints for chronic diseases. Stat Med. 1992, 11: 167-178. 10.1002/sim.4780110204.CrossRefPubMed
33.
go back to reference Johansson LA, Bjorkenstam C, Westerling R: Unexplained differences between hospital and mortality data indicated mistakes in death certification: an investigation of 1,094 deaths in Sweden during 1995. J Clin Epidemiol. 2009, 62 (11): 1202-1209. 10.1016/j.jclinepi.2009.01.010.CrossRefPubMed Johansson LA, Bjorkenstam C, Westerling R: Unexplained differences between hospital and mortality data indicated mistakes in death certification: an investigation of 1,094 deaths in Sweden during 1995. J Clin Epidemiol. 2009, 62 (11): 1202-1209. 10.1016/j.jclinepi.2009.01.010.CrossRefPubMed
35.
go back to reference Harvey JA, Gard CC, Miglioretti DL, Yankaskas BC, Kerlikowske K, Buist DS, Geller BA, Onega TL: Reported mammographic density: film-screen versus digital acquisition. Radiology. 2013, 266 (3): 752-758. 10.1148/radiol.12120221.CrossRefPubMedPubMedCentral Harvey JA, Gard CC, Miglioretti DL, Yankaskas BC, Kerlikowske K, Buist DS, Geller BA, Onega TL: Reported mammographic density: film-screen versus digital acquisition. Radiology. 2013, 266 (3): 752-758. 10.1148/radiol.12120221.CrossRefPubMedPubMedCentral
36.
go back to reference Demark-Wahnefried W, Campbell KL, Hayes SC: Weight management and its role in breast cancer rehabilitation. Cancer. 2012, 118 (8 Suppl): 2277-2287.CrossRefPubMed Demark-Wahnefried W, Campbell KL, Hayes SC: Weight management and its role in breast cancer rehabilitation. Cancer. 2012, 118 (8 Suppl): 2277-2287.CrossRefPubMed
38.
go back to reference Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E: Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000, 92 (13): 1081-1087. 10.1093/jnci/92.13.1081.CrossRefPubMed Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E: Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000, 92 (13): 1081-1087. 10.1093/jnci/92.13.1081.CrossRefPubMed
39.
go back to reference Ma L, Fishell E, Wright B, Hanna W, Allan S, Boyd NF: Case–control study of factors associated with failure to detect breast cancer by mammography. J Natl Cancer Inst. 1992, 84 (10): 781-785. 10.1093/jnci/84.10.781.CrossRefPubMed Ma L, Fishell E, Wright B, Hanna W, Allan S, Boyd NF: Case–control study of factors associated with failure to detect breast cancer by mammography. J Natl Cancer Inst. 1992, 84 (10): 781-785. 10.1093/jnci/84.10.781.CrossRefPubMed
40.
go back to reference Eriksson L, Czene K, Rosenberg LU, Tornberg S, Humphreys K, Hall P: Mammographic density and survival in interval breast cancers. Breast Cancer Res. 2013, 15 (3): R48-10.1186/bcr3440.CrossRefPubMedPubMedCentral Eriksson L, Czene K, Rosenberg LU, Tornberg S, Humphreys K, Hall P: Mammographic density and survival in interval breast cancers. Breast Cancer Res. 2013, 15 (3): R48-10.1186/bcr3440.CrossRefPubMedPubMedCentral
41.
go back to reference Boyd NF, Martin LJ, Yaffe MJ, Minkin S: Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011, 13 (6): 223-10.1186/bcr2942.CrossRefPubMedPubMedCentral Boyd NF, Martin LJ, Yaffe MJ, Minkin S: Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011, 13 (6): 223-10.1186/bcr2942.CrossRefPubMedPubMedCentral
42.
go back to reference Varghese JS, Thompson DJ, Michailidou K, Lindstrom S, Turnbull C, Brown J, Leyland J, Warren RM, Luben RN, Loos RJ, Wareham NJ, Rommens J, Martin LJ, Vachon CM, Scott CG, Atkinson EJ, Couch FJ, Apicella C, Southey MC, Stone J, Li J, Eriksson L, Czene K, Boyd NF, Hall P, Hopper JL, Tamimi RM: Mammographic breast density and breast cancer: evidence of a shared genetic basis. Cancer Res. 2012, 72 (6): 1478-1484. 10.1158/0008-5472.CAN-11-3295.CrossRefPubMedPubMedCentral Varghese JS, Thompson DJ, Michailidou K, Lindstrom S, Turnbull C, Brown J, Leyland J, Warren RM, Luben RN, Loos RJ, Wareham NJ, Rommens J, Martin LJ, Vachon CM, Scott CG, Atkinson EJ, Couch FJ, Apicella C, Southey MC, Stone J, Li J, Eriksson L, Czene K, Boyd NF, Hall P, Hopper JL, Tamimi RM: Mammographic breast density and breast cancer: evidence of a shared genetic basis. Cancer Res. 2012, 72 (6): 1478-1484. 10.1158/0008-5472.CAN-11-3295.CrossRefPubMedPubMedCentral
43.
go back to reference Brisson J, Brisson B, Cote G, Maunsell E, Berube S, Robert J: Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000, 9 (9): 911-915.PubMed Brisson J, Brisson B, Cote G, Maunsell E, Berube S, Robert J: Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000, 9 (9): 911-915.PubMed
44.
go back to reference Chow CK, Venzon D, Jones EC, Premkumar A, O'Shaughnessy J, Zujewski J: Effect of tamoxifen on mammographic density. Cancer Epidemiol Biomarkers Prev. 2000, 9 (9): 917-921.PubMed Chow CK, Venzon D, Jones EC, Premkumar A, O'Shaughnessy J, Zujewski J: Effect of tamoxifen on mammographic density. Cancer Epidemiol Biomarkers Prev. 2000, 9 (9): 917-921.PubMed
45.
go back to reference Martin LJ, Boyd NF: Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res. 2008, 10 (1): 201-10.1186/bcr1831.CrossRefPubMedPubMedCentral Martin LJ, Boyd NF: Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res. 2008, 10 (1): 201-10.1186/bcr1831.CrossRefPubMedPubMedCentral
46.
47.
go back to reference Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH: Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003, 5 (5): R129-R135. 10.1186/bcr622.CrossRefPubMedPubMedCentral Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH: Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003, 5 (5): R129-R135. 10.1186/bcr622.CrossRefPubMedPubMedCentral
48.
go back to reference Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF: Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev. 2001, 10 (3): 243-248.PubMed Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF: Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev. 2001, 10 (3): 243-248.PubMed
49.
Metadata
Title
Breast density and mode of detection in relation to breast cancer specific survival: a cohort study
Authors
Åsa Olsson
Hanna Sartor
Signe Borgquist
Sophia Zackrisson
Jonas Manjer
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-229

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine