Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Research

Optimizing NK-92 serial killers: gamma irradiation, CD95/Fas-ligation, and NK or LAK attack limit cytotoxic efficacy

Authors: Lydia Navarrete-Galvan, Michael Guglielmo, Judith Cruz Amaya, Julie Smith-Gagen, Vincent C. Lombardi, Rebecca Merica, Dorothy Hudig

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

The NK cell line NK-92 and its genetically modified variants are receiving attention as immunotherapies to treat a range of malignancies. However, since NK-92 cells are themselves tumors, they require irradiation prior to transfer and are potentially susceptible to attack by patients’ immune systems. Here, we investigated NK-92 cell-mediated serial killing for the effects of gamma-irradiation and ligation of the death receptor Fas (CD95), and NK-92 cell susceptibility to attack by activated primary blood NK cells.

Methods

To evaluate serial killing, we used 51Cr-release assays with low NK-92 effector cell to target Raji, Daudi or K562 tumor cell (E:T) ratios to determine killing frequencies at 2-, 4-, 6-, and 8-h.

Results

NK-92 cells were able to kill up to 14 Raji cells per NK-92 cell in 8 h. NK-92 cells retained high cytotoxic activity immediately after irradiation with 10 Gy but the cells surviving irradiation lost > 50% activity 1 day after irradiation. Despite high expression of CD95, NK-92 cells maintained their viability following overnight Fas/CD95-ligation but lost some cytotoxic activity. However, 1 day after irradiation, NK-92 cells were more susceptible to Fas ligation, resulting in decreased cytotoxic activity of the cells surviving irradiation. Irradiated NK-92 cells were also susceptible to killing by both unstimulated and IL-2 activated primary NK cells (LAK). In contrast, non-irradiated NK-92 cells were more resistant to attack by NK and LAK cells.

Conclusions

Irradiation is deleterious to both the survival and cytotoxicity mediated by NK-92 cells and renders the NK-92 cells susceptible to Fas-initiated death and death initiated by primary blood NK cells. Therefore, replacement of irradiation as an antiproliferative pretreatment and genetic deletion of Fas and/or NK activation ligands from adoptively transferred cell lines are indicated as new approaches to increase therapeutic efficacy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller JS, Lanier LL. Natural killer cells in cancer immunotherapy. Ann Rev Cancer Biol. 2019;3(1):77–103.CrossRef Miller JS, Lanier LL. Natural killer cells in cancer immunotherapy. Ann Rev Cancer Biol. 2019;3(1):77–103.CrossRef
2.
go back to reference Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M. Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Investig. 2019;129(9):3499–510.PubMedPubMedCentralCrossRef Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M. Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Investig. 2019;129(9):3499–510.PubMedPubMedCentralCrossRef
3.
go back to reference Heipertz EL, Zynda ER, Stav-Noraas TE, Hungler AD, Boucher SE, Kaur N, et al. Current perspectives on “Off-The-Shelf” allogeneic NK and CAR-NK cell therapies. Front Immunol. 2021;1:12. Heipertz EL, Zynda ER, Stav-Noraas TE, Hungler AD, Boucher SE, Kaur N, et al. Current perspectives on “Off-The-Shelf” allogeneic NK and CAR-NK cell therapies. Front Immunol. 2021;1:12.
4.
go back to reference Isaaz S, Baetz K, Olsen K, Podack E, Griffiths GM. Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur J Immunol. 1995;25(4):1071–9.PubMedCrossRef Isaaz S, Baetz K, Olsen K, Podack E, Griffiths GM. Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur J Immunol. 1995;25(4):1071–9.PubMedCrossRef
5.
6.
go back to reference Vanherberghen B, Olofsson PE, Forslund E, Sternberg-Simon M, Khorshidi MA, Pacouret S, et al. Classification of human natural killer cells based on migration behavior and cytotoxic response. Blood. 2013;121(8):1326–34.PubMedCrossRef Vanherberghen B, Olofsson PE, Forslund E, Sternberg-Simon M, Khorshidi MA, Pacouret S, et al. Classification of human natural killer cells based on migration behavior and cytotoxic response. Blood. 2013;121(8):1326–34.PubMedCrossRef
7.
go back to reference Perussia B, Trinchieri G. Inactivation of natural killer cell cytotoxic activity after interaction with target cells. J Immunobiol. 1981;126(2):754–8. Perussia B, Trinchieri G. Inactivation of natural killer cell cytotoxic activity after interaction with target cells. J Immunobiol. 1981;126(2):754–8.
8.
go back to reference Romain G, Senyukov V, Rey-Villamizar N, Merouane A, Kelton W, Liadi I, et al. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood. 2014;124(22):3241–9.PubMedPubMedCentralCrossRef Romain G, Senyukov V, Rey-Villamizar N, Merouane A, Kelton W, Liadi I, et al. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood. 2014;124(22):3241–9.PubMedPubMedCentralCrossRef
9.
go back to reference Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright ANR, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217(9):3267–83.PubMedPubMedCentralCrossRef Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright ANR, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217(9):3267–83.PubMedPubMedCentralCrossRef
10.
go back to reference Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy—advantages of the NK-92 cell line over blood NK cells. Front Immunol. 2016;14(7):91. Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy—advantages of the NK-92 cell line over blood NK cells. Front Immunol. 2016;14(7):91.
11.
go back to reference Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.PubMedPubMedCentralCrossRef Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.PubMedPubMedCentralCrossRef
12.
go back to reference Gunesch JT, Angelo LS, Mahapatra S, Deering RP, Kowalko JE, Sleiman P, et al. Genome-wide analyses and functional profiling of human NK cell lines. Mol Immunol. 2019;1(115):64–75.CrossRef Gunesch JT, Angelo LS, Mahapatra S, Deering RP, Kowalko JE, Sleiman P, et al. Genome-wide analyses and functional profiling of human NK cell lines. Mol Immunol. 2019;1(115):64–75.CrossRef
13.
go back to reference Yang HG, Kang MC, Kim TY, Hwang I, Jin HT, Sung YC, et al. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy. J Immunother Cancer. 2019;7(1):138.PubMedPubMedCentralCrossRef Yang HG, Kang MC, Kim TY, Hwang I, Jin HT, Sung YC, et al. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy. J Immunother Cancer. 2019;7(1):138.PubMedPubMedCentralCrossRef
14.
go back to reference Solocinski K, Padget MR, Fabian KP, Wolfson B, Cecchi F, Hembrough T, et al. Overcoming hypoxia-induced functional suppression of NK cells. J Immunother Cancer. 2020;8(1):e000246.PubMedPubMedCentralCrossRef Solocinski K, Padget MR, Fabian KP, Wolfson B, Cecchi F, Hembrough T, et al. Overcoming hypoxia-induced functional suppression of NK cells. J Immunother Cancer. 2020;8(1):e000246.PubMedPubMedCentralCrossRef
15.
go back to reference Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016;65(4):485–92.PubMedCrossRef Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016;65(4):485–92.PubMedCrossRef
16.
go back to reference Jochems C, Hodge JW, Fantini M, Tsang KY, Vandeveer AJ, Gulley JL, et al. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Int J Cancer. 2017;141(3):583–93.PubMedPubMedCentralCrossRef Jochems C, Hodge JW, Fantini M, Tsang KY, Vandeveer AJ, Gulley JL, et al. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Int J Cancer. 2017;141(3):583–93.PubMedPubMedCentralCrossRef
17.
go back to reference Fabian KP, Padget MR, Donahue RN, Solocinski K, Robbins Y, Allen CT, et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J Immunother Cancer. 2020;8(1):e000450.PubMedPubMedCentralCrossRef Fabian KP, Padget MR, Donahue RN, Solocinski K, Robbins Y, Allen CT, et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J Immunother Cancer. 2020;8(1):e000450.PubMedPubMedCentralCrossRef
18.
go back to reference Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6):625–32.PubMedCrossRef Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6):625–32.PubMedCrossRef
19.
go back to reference Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563–70.PubMedCrossRef Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563–70.PubMedCrossRef
20.
go back to reference Burger M. Intracranial injection of NK-92/5.28.z cells in patients with recurrent HER2-positive glioblastoma (CAR2BRAIN). Identifier NCT03383978. National Library of Medicine U.S.; 2017. Burger M. Intracranial injection of NK-92/5.28.z cells in patients with recurrent HER2-positive glioblastoma (CAR2BRAIN). Identifier NCT03383978. National Library of Medicine U.S.; 2017.
21.
go back to reference Williams BA, Law AD, Routy B, denHollander N, Gupta V, Wang XH, et al. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget. 2017;8(51):89256–68.PubMedPubMedCentralCrossRef Williams BA, Law AD, Routy B, denHollander N, Gupta V, Wang XH, et al. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget. 2017;8(51):89256–68.PubMedPubMedCentralCrossRef
22.
go back to reference Klingemann H-G, Wong E, Maki G. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transpl. 1996;2(2):68–75. Klingemann H-G, Wong E, Maki G. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transpl. 1996;2(2):68–75.
23.
go back to reference Golstein P. Cytotoxicity, mechanisms of encyclopedia of immunology. 1998;732–4. Golstein P. Cytotoxicity, mechanisms of encyclopedia of immunology. 1998;732–4.
24.
go back to reference McNerney ME, Lee KM, Kumar V. 2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Mol Immunol. 2005;42:489–94.PubMedCrossRef McNerney ME, Lee KM, Kumar V. 2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Mol Immunol. 2005;42:489–94.PubMedCrossRef
25.
go back to reference Pross HF, Maroun JA. The standardization of NK cell assays for use in studies of biological response modifiers. J Immunol Methods. 1984;68(1–2):235–49.PubMedCrossRef Pross HF, Maroun JA. The standardization of NK cell assays for use in studies of biological response modifiers. J Immunol Methods. 1984;68(1–2):235–49.PubMedCrossRef
26.
go back to reference Bryant J, Day R, Whiteside TL, Herberman RB. Calculation of lytic units for the expression of cell-mediated cytotoxicity. J Immunol Methods. 1992;146(1):91–103.PubMedCrossRef Bryant J, Day R, Whiteside TL, Herberman RB. Calculation of lytic units for the expression of cell-mediated cytotoxicity. J Immunol Methods. 1992;146(1):91–103.PubMedCrossRef
27.
go back to reference Overton WR. Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry. 1988;9(6):619–26.PubMedCrossRef Overton WR. Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry. 1988;9(6):619–26.PubMedCrossRef
28.
go back to reference Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res. 1998;4(11):2859–68.PubMed Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res. 1998;4(11):2859–68.PubMed
29.
go back to reference Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22.PubMedCrossRef Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22.PubMedCrossRef
30.
go back to reference Choi PJ, Mitchison TJ. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells. Proc Natl Acad Sci USA. 2013;110(16):6488–93.PubMedPubMedCentralCrossRef Choi PJ, Mitchison TJ. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells. Proc Natl Acad Sci USA. 2013;110(16):6488–93.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Timmer T, de Vries EGE, de Jong S. Fas receptor-mediated apoptosis: a clinical application? J Pathol. 2002;196(2):125–34.PubMedCrossRef Timmer T, de Vries EGE, de Jong S. Fas receptor-mediated apoptosis: a clinical application? J Pathol. 2002;196(2):125–34.PubMedCrossRef
33.
go back to reference Matsui H, Tsuji S, Nishimura H, Nagasawa S. Activation of the alternative pathway of complement by apoptotic Jurkat cells. FEBS Lett. 1994;351(3):419–22.PubMedCrossRef Matsui H, Tsuji S, Nishimura H, Nagasawa S. Activation of the alternative pathway of complement by apoptotic Jurkat cells. FEBS Lett. 1994;351(3):419–22.PubMedCrossRef
34.
go back to reference Bergman H, Sissala N, Hägerstrand H, Lindqvist C. Human NK-92 cells function as target cells for human NK Cells—implications for CAR NK-92 therapies. Anticancer Res. 2020;40(10):5355–9.PubMedCrossRef Bergman H, Sissala N, Hägerstrand H, Lindqvist C. Human NK-92 cells function as target cells for human NK Cells—implications for CAR NK-92 therapies. Anticancer Res. 2020;40(10):5355–9.PubMedCrossRef
35.
go back to reference Bergman H, Lindqvist C. Human IL-15 inhibits NK cells specific for human NK-92 cells. Anticancer Res. 2021;41(7):3281–5.PubMedCrossRef Bergman H, Lindqvist C. Human IL-15 inhibits NK cells specific for human NK-92 cells. Anticancer Res. 2021;41(7):3281–5.PubMedCrossRef
36.
go back to reference Ames E, Canter RJ, Grossenbacher SK, Mac S, Smith RC, Monjazeb AM, et al. Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells. OncoImmunology. 2015;4(9):e1036212.PubMedPubMedCentralCrossRef Ames E, Canter RJ, Grossenbacher SK, Mac S, Smith RC, Monjazeb AM, et al. Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells. OncoImmunology. 2015;4(9):e1036212.PubMedPubMedCentralCrossRef
37.
go back to reference Antona S, Platzman I, Spatz JP. Droplet-based cytotoxicity assay: implementation of time-efficient screening of antitumor activity of natural killer cells. ACS Omega. 2020;5(38):24674–83.PubMedPubMedCentralCrossRef Antona S, Platzman I, Spatz JP. Droplet-based cytotoxicity assay: implementation of time-efficient screening of antitumor activity of natural killer cells. ACS Omega. 2020;5(38):24674–83.PubMedPubMedCentralCrossRef
38.
go back to reference Suck G, Branch DR, Smyth MJ, Miller RG, Vergidis J, Fahim S, et al. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol. 2005;33(10):1160–71.PubMedCrossRef Suck G, Branch DR, Smyth MJ, Miller RG, Vergidis J, Fahim S, et al. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol. 2005;33(10):1160–71.PubMedCrossRef
39.
go back to reference Classen CF, Ushmorov A, Bird P, Debatin KM. The granzyme B inhibitor PI-9 is differentially expressed in all main subtypes of pediatric acute lymphoblastic leukemias. Haematologica. 2004;89(11):1314–21.PubMed Classen CF, Ushmorov A, Bird P, Debatin KM. The granzyme B inhibitor PI-9 is differentially expressed in all main subtypes of pediatric acute lymphoblastic leukemias. Haematologica. 2004;89(11):1314–21.PubMed
40.
go back to reference Zingoni A, Vulpis E, Loconte L, Santoni A. NKG2D ligand shedding in response to stress: role of ADAM10. Front Immunol. 2020;25:11. Zingoni A, Vulpis E, Loconte L, Santoni A. NKG2D ligand shedding in response to stress: role of ADAM10. Front Immunol. 2020;25:11.
41.
go back to reference Molfetta R, Quatrini L, Santoni A, Paolini R. Regulation of NKG2D-dependent NK Cell functions: the Yin and the Yang of receptor endocytosis. Int J Mol Sci. 2017;18(8):1677.PubMedCentralCrossRef Molfetta R, Quatrini L, Santoni A, Paolini R. Regulation of NKG2D-dependent NK Cell functions: the Yin and the Yang of receptor endocytosis. Int J Mol Sci. 2017;18(8):1677.PubMedCentralCrossRef
42.
go back to reference Walcher L, Kistenmacher AK, Sommer C, Böhlen S, Ziemann C, Dehmel S, et al. Low energy electron irradiation is a potent alternative to gamma irradiation for the inactivation of (CAR-)NK-92 cells in ATMP manufacturing. Front Immunol. 2021;4:12. Walcher L, Kistenmacher AK, Sommer C, Böhlen S, Ziemann C, Dehmel S, et al. Low energy electron irradiation is a potent alternative to gamma irradiation for the inactivation of (CAR-)NK-92 cells in ATMP manufacturing. Front Immunol. 2021;4:12.
43.
go back to reference Jochems C, Hodge JW, Fantini M, Fujii R, Maurice Morillon YI, Greiner JW, et al. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget. 2016;7(52):86359–73.PubMedPubMedCentralCrossRef Jochems C, Hodge JW, Fantini M, Fujii R, Maurice Morillon YI, Greiner JW, et al. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget. 2016;7(52):86359–73.PubMedPubMedCentralCrossRef
44.
go back to reference Guldevall K, Brandt L, Forslund E, Olofsson K, Frisk TW, Olofsson PE, et al. Microchip screening platform for single cell assessment of NK cell cytotoxicity. Front Immunol. 2016;7:119.PubMedPubMedCentralCrossRef Guldevall K, Brandt L, Forslund E, Olofsson K, Frisk TW, Olofsson PE, et al. Microchip screening platform for single cell assessment of NK cell cytotoxicity. Front Immunol. 2016;7:119.PubMedPubMedCentralCrossRef
45.
go back to reference Kim SE, Kim H, Doh J. Single cell arrays of hematological cancer cells for assessment of lymphocyte cytotoxicity dynamics, serial killing, and extracellular molecules. Lab Chip. 2019;19(11):2009–18.PubMedCrossRef Kim SE, Kim H, Doh J. Single cell arrays of hematological cancer cells for assessment of lymphocyte cytotoxicity dynamics, serial killing, and extracellular molecules. Lab Chip. 2019;19(11):2009–18.PubMedCrossRef
46.
go back to reference Krisko A, Radman M. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Nat Acad Sci USA. 2010;107(32):14373–7.PubMedPubMedCentralCrossRef Krisko A, Radman M. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Nat Acad Sci USA. 2010;107(32):14373–7.PubMedPubMedCentralCrossRef
47.
go back to reference Radman M. Protein damage, radiation sensitivity and aging. DNA Repair. 2016;1(44):186–92.CrossRef Radman M. Protein damage, radiation sensitivity and aging. DNA Repair. 2016;1(44):186–92.CrossRef
48.
go back to reference Robertson MJ, Manley TJ, Pichert G, Cameron C, Cochran KJ, Levine H, et al. Functional consequences of APO-1/fas (CD95) antigen expression by normal and neoplastic hematopoietic cells. Leuk Lymphoma. 1995;17(1–2):51–61.PubMedCrossRef Robertson MJ, Manley TJ, Pichert G, Cameron C, Cochran KJ, Levine H, et al. Functional consequences of APO-1/fas (CD95) antigen expression by normal and neoplastic hematopoietic cells. Leuk Lymphoma. 1995;17(1–2):51–61.PubMedCrossRef
49.
go back to reference Medvedev AE, Johnsen AC, Haux J, Steinkjer B, Egeberg K, Lynch DH, et al. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of FAS-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine. 1997;9(6):394–404.PubMedCrossRef Medvedev AE, Johnsen AC, Haux J, Steinkjer B, Egeberg K, Lynch DH, et al. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of FAS-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine. 1997;9(6):394–404.PubMedCrossRef
50.
go back to reference Han R, Wu WQ, Wu XP, Liu CY. Effect of total flavonoids from the seeds of Astragali complanati on natural killer cell function. J Ethnopharmacol. 2015;173:157–65.PubMedCrossRef Han R, Wu WQ, Wu XP, Liu CY. Effect of total flavonoids from the seeds of Astragali complanati on natural killer cell function. J Ethnopharmacol. 2015;173:157–65.PubMedCrossRef
51.
go back to reference Barnhart BC, Alappat EC, Peter ME. The CD95 Type I/Type II model. Semin Immunol. 2003;15(3):185–93.PubMedCrossRef Barnhart BC, Alappat EC, Peter ME. The CD95 Type I/Type II model. Semin Immunol. 2003;15(3):185–93.PubMedCrossRef
52.
go back to reference Cunningham TD, Jiang X, Shapiro DJ. Expression of high levels of human proteinase inhibitor 9 blocks both perforin/granzyme and Fas/Fas ligand-mediated cytotoxicity. Cell Immunol. 2007;245(1):32–41.PubMedPubMedCentralCrossRef Cunningham TD, Jiang X, Shapiro DJ. Expression of high levels of human proteinase inhibitor 9 blocks both perforin/granzyme and Fas/Fas ligand-mediated cytotoxicity. Cell Immunol. 2007;245(1):32–41.PubMedPubMedCentralCrossRef
53.
go back to reference Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry of apoptosis. Historical perspective and new advances. Exp Oncol. 2012;34(3):255–62.PubMedPubMedCentral Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry of apoptosis. Historical perspective and new advances. Exp Oncol. 2012;34(3):255–62.PubMedPubMedCentral
54.
go back to reference Huang RS, Shih HA, Lai MC, Chang YJ, Lin S. Enhanced NK-92 cytotoxicity by CRISPR genome engineering using Cas9 ribonucleoproteins. Front Immunol. 2020;11:1008.PubMedPubMedCentralCrossRef Huang RS, Shih HA, Lai MC, Chang YJ, Lin S. Enhanced NK-92 cytotoxicity by CRISPR genome engineering using Cas9 ribonucleoproteins. Front Immunol. 2020;11:1008.PubMedPubMedCentralCrossRef
Metadata
Title
Optimizing NK-92 serial killers: gamma irradiation, CD95/Fas-ligation, and NK or LAK attack limit cytotoxic efficacy
Authors
Lydia Navarrete-Galvan
Michael Guglielmo
Judith Cruz Amaya
Julie Smith-Gagen
Vincent C. Lombardi
Rebecca Merica
Dorothy Hudig
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03350-6

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine