Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2020

01-04-2020 | Original Article

Optimization of reconstruction and quantification of motion-corrected coronary PET-CT

Authors: Mhairi K. Doris, MD, Yuka Otaki, MD, Sandeep K. Krishnan, MD, Jacek Kwiecinski, MD, Mathieu Rubeaux, PhD, Adam Alessio, PhD, Tinsu Pan, PhD, Sebastien Cadet, MSc, Damini Dey, PhD, Marc R. Dweck, MD, David E. Newby, MD, Daniel S. Berman, MD, Piotr J. Slomka, PhD

Published in: Journal of Nuclear Cardiology | Issue 2/2020

Login to get access

Abstract

Background

Coronary PET shows promise in the detection of high-risk atherosclerosis, but there remains a need to optimize imaging and reconstruction techniques. We investigated the impact of reconstruction parameters and cardiac motion-correction in 18F Sodium Fluoride (18F-NaF) PET.

Methods

Twenty-two patients underwent 18F-NaF PET within 22 days of an acute coronary syndrome. Optimal reconstruction parameters were determined in a subgroup of six patients. Motion-correction was performed on ECG-gated data of all patients with optimal reconstruction. Tracer uptake was quantified in culprit and reference lesions by computing signal-to-noise ratio (SNR) in diastolic, summed, and motion-corrected images.

Results

Reconstruction using 24 subsets, 4 iterations, point-spread-function modelling, time of flight, and 5-mm post-filtering provided the highest median SNR (31.5) compared to 4 iterations 0-mm (22.5), 8 iterations 0-mm (21.1), and 8 iterations 5-mm (25.6; all P < .05). Motion-correction improved SNR of culprit lesions (n = 33) (24.5[19.9-31.5]) compared to diastolic (15.7[12.4-18.1]; P < .001) and summed data (22.1[18.9-29.2]; P < .001). Motion-correction increased the SNR difference between culprit and reference lesions (10.9[6.3-12.6]) compared to diastolic (6.2[3.6-10.3]; P = .001) and summed data (7.1 [4.8-11.6]; P = .001).

Conclusions

The number of iterations and extent of post-filtering has marked effects on coronary 18F-NaF PET quantification. Cardiac motion-correction improves discrimination between culprit and reference lesions.
Literature
1.
go back to reference Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. The Lancet 2014;383(9918):705-13.CrossRef Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. The Lancet 2014;383(9918):705-13.CrossRef
2.
go back to reference Lee JM, Bang JI, Koo BK, Hwang D, Park J, Zhang J, et al. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging 2017;10(11):e006704.PubMedCrossRef Lee JM, Bang JI, Koo BK, Hwang D, Park J, Zhang J, et al. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging 2017;10(11):e006704.PubMedCrossRef
4.
go back to reference Kitagawa T, Yamamoto H, Toshimitsu S, Sasaki K, Senoo A, Hirokawa Y, et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 2017;263:385-92.PubMedCrossRef Kitagawa T, Yamamoto H, Toshimitsu S, Sasaki K, Senoo A, Hirokawa Y, et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 2017;263:385-92.PubMedCrossRef
5.
go back to reference Rubeaux M, Joshi N, Dweck M, Fletcher A, Motwani M, Germano G, et al. Motion-correction of 18F-sodium fluoride PET for imaging coronary atherosclerotic plaques. J Nucl Med 2016;57(1):54–9.PubMedCrossRef Rubeaux M, Joshi N, Dweck M, Fletcher A, Motwani M, Germano G, et al. Motion-correction of 18F-sodium fluoride PET for imaging coronary atherosclerotic plaques. J Nucl Med 2016;57(1):54–9.PubMedCrossRef
6.
go back to reference Vercauteren T, Pennec X, Perchant A, Ayache N. Symmetric log-domain diffeomorphic registration: A demons-based approach. Med Image Comput Comput Assist Interv 2008;11:754-61.PubMed Vercauteren T, Pennec X, Perchant A, Ayache N. Symmetric log-domain diffeomorphic registration: A demons-based approach. Med Image Comput Comput Assist Interv 2008;11:754-61.PubMed
7.
go back to reference Rubeaux M, Joshi N, Dweck MR, Fletcher A, Motwani M, Thomson LE, et al. Demons vs Level-Set motion registration for coronary (18)F-sodium fluoride PET. In: Styner MA, Angelini ED, editors. Proc SPIE Int Soc Opt Eng 2016;9784:97843Y-1. Rubeaux M, Joshi N, Dweck MR, Fletcher A, Motwani M, Thomson LE, et al. Demons vs Level-Set motion registration for coronary (18)F-sodium fluoride PET. In: Styner MA, Angelini ED, editors. Proc SPIE Int Soc Opt Eng 2016;9784:97843Y-1.
8.
go back to reference Dru F, Vercauteren T. An ITK implementation of the symmetric log-domain diffeomorphic demons algorithm. 2017;1-11. Dru F, Vercauteren T. An ITK implementation of the symmetric log-domain diffeomorphic demons algorithm. 2017;1-11.
9.
go back to reference Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 2004;45(9):1431-4.PubMed Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 2004;45(9):1431-4.PubMed
10.
go back to reference Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 2004;45(9):1519-27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 2004;45(9):1519-27.PubMed
11.
go back to reference Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48(9):1818-24.PubMedCrossRef Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48(9):1818-24.PubMedCrossRef
12.
go back to reference Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50(9):892-6.PubMedCrossRef Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50(9):892-6.PubMedCrossRef
13.
go back to reference Asabella AN, Ciccone MM, Cortese F, Scicchitano P, Gesualdo M, Zito A, et al. Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: A pilot study. Ann Nucl Med 2014;28(6):571-9.CrossRef Asabella AN, Ciccone MM, Cortese F, Scicchitano P, Gesualdo M, Zito A, et al. Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: A pilot study. Ann Nucl Med 2014;28(6):571-9.CrossRef
14.
go back to reference Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49(6):871-8.PubMedCrossRef Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49(6):871-8.PubMedCrossRef
15.
go back to reference Vesey AT, Jenkins WS, Irkle A, Moss A, Sng G, Forsythe RO, et al. 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: Case–control study. Circ Cardiovasc Imaging 2017;10(3):e004976.PubMedPubMedCentralCrossRef Vesey AT, Jenkins WS, Irkle A, Moss A, Sng G, Forsythe RO, et al. 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: Case–control study. Circ Cardiovasc Imaging 2017;10(3):e004976.PubMedPubMedCentralCrossRef
16.
go back to reference Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: Suggestions for improvement. J Nucl Med 2015;56(4):552-9.PubMedCrossRef Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: Suggestions for improvement. J Nucl Med 2015;56(4):552-9.PubMedCrossRef
17.
go back to reference Shechter G, Resar JR, McVeigh ER. Displacement and velocity of the coronary arteries: Cardiac and respiratory motion. IEEE Trans Med Imaging 2006;25(3):369-75.PubMedPubMedCentralCrossRef Shechter G, Resar JR, McVeigh ER. Displacement and velocity of the coronary arteries: Cardiac and respiratory motion. IEEE Trans Med Imaging 2006;25(3):369-75.PubMedPubMedCentralCrossRef
18.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48(6):932-45.PubMedCrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48(6):932-45.PubMedCrossRef
19.
go back to reference Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012;53(11):1716-22.PubMedCrossRef Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012;53(11):1716-22.PubMedCrossRef
20.
go back to reference Schaefferkoetter J, Casey M, Townsend D, Fakhri El G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: A lesion detection study. Phys Med Biol 2013;58(5):1465-78.PubMedPubMedCentralCrossRef Schaefferkoetter J, Casey M, Townsend D, Fakhri El G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: A lesion detection study. Phys Med Biol 2013;58(5):1465-78.PubMedPubMedCentralCrossRef
Metadata
Title
Optimization of reconstruction and quantification of motion-corrected coronary PET-CT
Authors
Mhairi K. Doris, MD
Yuka Otaki, MD
Sandeep K. Krishnan, MD
Jacek Kwiecinski, MD
Mathieu Rubeaux, PhD
Adam Alessio, PhD
Tinsu Pan, PhD
Sebastien Cadet, MSc
Damini Dey, PhD
Marc R. Dweck, MD
David E. Newby, MD
Daniel S. Berman, MD
Piotr J. Slomka, PhD
Publication date
01-04-2020
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 2/2020
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-018-1317-5

Other articles of this Issue 2/2020

Journal of Nuclear Cardiology 2/2020 Go to the issue