Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Methodology

Optimization of protocols for pre-embedding immunogold electron microscopy of neurons in cell cultures and brains

Authors: Jung-Hwa Tao-Cheng, Virginia Crocker, Sandra Lara Moreira, Rita Azzam

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Immunogold labeling allows localization of proteins at the electron microscopy (EM) level of resolution, and quantification of signals. The present paper summarizes methodological issues and experiences gained from studies on the distribution of synaptic and other neuron-specific proteins in cell cultures and brain tissues via a pre-embedding method. An optimal protocol includes careful determination of a fixation condition for any particular antibody, a well-planned tissue processing procedure, and a strict evaluation of the credibility of the labeling. Here, tips and caveats on different steps of the sample preparation protocol are illustrated with examples. A good starting condition for EM-compatible fixation and permeabilization is 4% paraformaldehyde in PBS for 30 min at room temperature, followed by 30 min incubation with 0.1% saponin. An optimal condition can then be readjusted for each particular antibody. Each lot of the secondary antibody (conjugated with a 1.4 nm small gold particle) needs to be evaluated against known standards for labeling efficiency. Silver enhancement is required to make the small gold visible, and quality of the silver-enhanced signals can be affected by subsequent steps of osmium tetroxide treatment, uranyl acetate en bloc staining, and by detergent or ethanol used to clean the diamond knife for cutting thin sections. Most importantly, verification of signals requires understanding of the protein of interest in order to validate for correct localization of antibodies at expected epitopes on particular organelles, and quantification of signals needs to take into consideration the penetration gradient of reagents and clumping of secondary antibodies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron. 2010;68:843–56.CrossRef Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron. 2010;68:843–56.CrossRef
2.
go back to reference Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science. 2018;361:880–7.CrossRef Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science. 2018;361:880–7.CrossRef
3.
go back to reference Chan J, Aoki C, Pickel VM. Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods. 1990;33:113–27.CrossRef Chan J, Aoki C, Pickel VM. Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods. 1990;33:113–27.CrossRef
4.
go back to reference Tanner VA, Ploug T, Tao-Cheng JH. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures. J Histochem Cytochem. 1996;44:1481–8.CrossRef Tanner VA, Ploug T, Tao-Cheng JH. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures. J Histochem Cytochem. 1996;44:1481–8.CrossRef
5.
go back to reference Dosemeci A, Weinberg RJ, Reese TS, Tao-Cheng JH. The postsynaptic density: there is more than meets the eye. Front Synaptic Neurosci. 2016;8:23.CrossRef Dosemeci A, Weinberg RJ, Reese TS, Tao-Cheng JH. The postsynaptic density: there is more than meets the eye. Front Synaptic Neurosci. 2016;8:23.CrossRef
6.
go back to reference Tao-Cheng JH. Activity-dependent redistribution of CaMKII in the postsynaptic compartment of hippocampal neurons. Mol Brain. 2020;13:53.CrossRef Tao-Cheng JH. Activity-dependent redistribution of CaMKII in the postsynaptic compartment of hippocampal neurons. Mol Brain. 2020;13:53.CrossRef
7.
go back to reference Ochs RL, Stein TW Jr, Tan EM. Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci. 1994;107:385–99.CrossRef Ochs RL, Stein TW Jr, Tan EM. Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci. 1994;107:385–99.CrossRef
8.
go back to reference Spector DL, Goldman RD, Leinwand LA. Immunoelectron microscopy. In: Cells, A Laboratory Manual, Volume 3. Plainview, New York: Cold Spring Harbor Laboratory Press; 1998. Chapter 128. Spector DL, Goldman RD, Leinwand LA. Immunoelectron microscopy. In: Cells, A Laboratory Manual, Volume 3. Plainview, New York: Cold Spring Harbor Laboratory Press; 1998. Chapter 128.
9.
go back to reference Polishchuk EV, Polishchuk RS. Pre-embedding labeling for subcellular detection of molecules with electron microscopy. Tissue Cell. 2019;57:103–10.CrossRef Polishchuk EV, Polishchuk RS. Pre-embedding labeling for subcellular detection of molecules with electron microscopy. Tissue Cell. 2019;57:103–10.CrossRef
10.
go back to reference Petralia RS, Wenthold RJ. Immunocytochemistry of NMDA receptors. Methods Mol Biol. 1999;128:73–92.PubMed Petralia RS, Wenthold RJ. Immunocytochemistry of NMDA receptors. Methods Mol Biol. 1999;128:73–92.PubMed
11.
go back to reference Möbius W, Posthuma G. Sugar and ice: immunoelectron microscopy using cryosections according to the Tokuyasu method. Tissue Cell. 2019;57:90–102.CrossRef Möbius W, Posthuma G. Sugar and ice: immunoelectron microscopy using cryosections according to the Tokuyasu method. Tissue Cell. 2019;57:90–102.CrossRef
12.
go back to reference Robinson JM, Takizawa T, Vandré DD, Burry RW. Ultrasmall immunogold particles: important probes for immunocytochemistry. Microsc Res Tech. 1998;42:13–23.CrossRef Robinson JM, Takizawa T, Vandré DD, Burry RW. Ultrasmall immunogold particles: important probes for immunocytochemistry. Microsc Res Tech. 1998;42:13–23.CrossRef
13.
go back to reference Hainfeld JF, Powell RD. New frontiers in gold labeling. J Histochem Cytochem. 2000;48:471–80.CrossRef Hainfeld JF, Powell RD. New frontiers in gold labeling. J Histochem Cytochem. 2000;48:471–80.CrossRef
14.
go back to reference Hacker GW, Grimelius L, Danscher G, Bernatzky G, Muss W, Adam H, Thurner J. Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol. 1988;11:213–21.CrossRef Hacker GW, Grimelius L, Danscher G, Bernatzky G, Muss W, Adam H, Thurner J. Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol. 1988;11:213–21.CrossRef
15.
go back to reference Burry RW, Vandré DD, Hayes DM. Silver enhancement of gold antibody probes in pre-embedding electron microscopic immunocytochemistry. J Histochem Cytochem. 1992;40:1849–56.CrossRef Burry RW, Vandré DD, Hayes DM. Silver enhancement of gold antibody probes in pre-embedding electron microscopic immunocytochemistry. J Histochem Cytochem. 1992;40:1849–56.CrossRef
16.
go back to reference Lu Z, McLaren RS, Winters CA, Ralston E. Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons. Mol Cell Neurosci. 1998;12:363–75.CrossRef Lu Z, McLaren RS, Winters CA, Ralston E. Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons. Mol Cell Neurosci. 1998;12:363–75.CrossRef
17.
go back to reference Tao-Cheng J-H. Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience. 2007;150:575–84.CrossRef Tao-Cheng J-H. Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience. 2007;150:575–84.CrossRef
18.
go back to reference Tao-Cheng JH. Immunogold labeling of synaptic vesicle proteins in developing hippocampal neurons. Mol Brain. 2020;13:9.CrossRef Tao-Cheng JH. Immunogold labeling of synaptic vesicle proteins in developing hippocampal neurons. Mol Brain. 2020;13:9.CrossRef
19.
go back to reference Tao-Cheng JH, Gallant PE, Brightman MW, Dosemeci A, Reese TS. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J Comp Neurol. 2007;50:731–40.CrossRef Tao-Cheng JH, Gallant PE, Brightman MW, Dosemeci A, Reese TS. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J Comp Neurol. 2007;50:731–40.CrossRef
20.
go back to reference Dosemeci A, Burch A, Loo H, Toy D, Tao-Cheng JH. IRSp53 accumulates at the postsynaptic density under excitatory conditions. PLoS ONE. 2017;12:e0190250.CrossRef Dosemeci A, Burch A, Loo H, Toy D, Tao-Cheng JH. IRSp53 accumulates at the postsynaptic density under excitatory conditions. PLoS ONE. 2017;12:e0190250.CrossRef
21.
go back to reference Tao-Cheng JH, Toy D, Winters CA, Reese TS, Dosemeci A. Zinc stabilizes shank 3 at the postsynaptic density of hippocampal synapses. PLoS ONE. 2016;11:e0153979.CrossRef Tao-Cheng JH, Toy D, Winters CA, Reese TS, Dosemeci A. Zinc stabilizes shank 3 at the postsynaptic density of hippocampal synapses. PLoS ONE. 2016;11:e0153979.CrossRef
22.
go back to reference Zheng X, Gallot G. Dynamics of cell membrane permeabilization by saponins using terahertz attenuated total reflection. Biophys J. 2020;119:749–55.CrossRef Zheng X, Gallot G. Dynamics of cell membrane permeabilization by saponins using terahertz attenuated total reflection. Biophys J. 2020;119:749–55.CrossRef
23.
go back to reference Ralston E, Ploug T. Pre-embedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization. Scanning Microsc Suppl. 1996;10:249–59.PubMed Ralston E, Ploug T. Pre-embedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization. Scanning Microsc Suppl. 1996;10:249–59.PubMed
24.
go back to reference Tao-Cheng JH, Crocker VT, Winters CA, Azzam R, Chludzinski J, Reese TS. Trafficking of AMPA receptors at plasma membranes of hippocampal neurons. J Neurosci. 2011;31:4834–43.CrossRef Tao-Cheng JH, Crocker VT, Winters CA, Azzam R, Chludzinski J, Reese TS. Trafficking of AMPA receptors at plasma membranes of hippocampal neurons. J Neurosci. 2011;31:4834–43.CrossRef
25.
go back to reference Mandikian D, Bocksteins E, Parajuli LK, Bishop HI, Cerda O, Shigemoto R, Trimmer JS. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol. 2014;522:3555–74.CrossRef Mandikian D, Bocksteins E, Parajuli LK, Bishop HI, Cerda O, Shigemoto R, Trimmer JS. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol. 2014;522:3555–74.CrossRef
27.
go back to reference Hovius R, Lambrechts H, Nicolay K, de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta. 1990;1021:217–26.CrossRef Hovius R, Lambrechts H, Nicolay K, de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta. 1990;1021:217–26.CrossRef
28.
go back to reference Salio C, Lossi L, Merighi A. Combined light and electron microscopic visualization of neuropeptides and their receptors in central neurons. Methods Mol Biol. 2011;789:57–71.CrossRef Salio C, Lossi L, Merighi A. Combined light and electron microscopic visualization of neuropeptides and their receptors in central neurons. Methods Mol Biol. 2011;789:57–71.CrossRef
29.
go back to reference Yang Y, Tao-Cheng JH, Reese TS, Dosemeci A. SynGAP moves out of the core of the postsynaptic density upon depolarization. Neuroscience. 2011;192:132–9.CrossRef Yang Y, Tao-Cheng JH, Reese TS, Dosemeci A. SynGAP moves out of the core of the postsynaptic density upon depolarization. Neuroscience. 2011;192:132–9.CrossRef
30.
go back to reference Tao-Cheng JH, Thein S, Yang Y, Reese TS, Gallant PE. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience. 2014;266:80–90.CrossRef Tao-Cheng JH, Thein S, Yang Y, Reese TS, Gallant PE. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience. 2014;266:80–90.CrossRef
31.
go back to reference Voskuil JLA, Bandrowski A, Begley CG, Bradbury ARM, Chalmers AD, Gomes AV, Hardcastle T, Lund-Johansen F, Plückthun A, Roncador G, Solache A, Taussig MJ, Trimmer JS, Williams C, Goodman SL. The Antibody Society’s antibody validation webinar series. MAbs. 2020;12:1794421.CrossRef Voskuil JLA, Bandrowski A, Begley CG, Bradbury ARM, Chalmers AD, Gomes AV, Hardcastle T, Lund-Johansen F, Plückthun A, Roncador G, Solache A, Taussig MJ, Trimmer JS, Williams C, Goodman SL. The Antibody Society’s antibody validation webinar series. MAbs. 2020;12:1794421.CrossRef
32.
go back to reference Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez H, Hiltke T, Snyder M, Yamamoto T. A proposal for validation of antibodies. Nat Methods. 2016;13:823–7.CrossRef Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez H, Hiltke T, Snyder M, Yamamoto T. A proposal for validation of antibodies. Nat Methods. 2016;13:823–7.CrossRef
34.
go back to reference Mignery GA, Südhof TC, Takei K, De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 1989;342:192–5.CrossRef Mignery GA, Südhof TC, Takei K, De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 1989;342:192–5.CrossRef
35.
go back to reference Fujiyama F, Furuta T, Kaneko T. Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol. 2001;435:379–87.CrossRef Fujiyama F, Furuta T, Kaneko T. Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol. 2001;435:379–87.CrossRef
36.
go back to reference Dosemeci A, Reese TS, Petersen J, Tao-Cheng JH. A novel particulate form of Ca(2+)/calmodulin-dependent protein kinase II in neurons. J Neurosci. 2000;20:3076–84.CrossRef Dosemeci A, Reese TS, Petersen J, Tao-Cheng JH. A novel particulate form of Ca(2+)/calmodulin-dependent protein kinase II in neurons. J Neurosci. 2000;20:3076–84.CrossRef
37.
go back to reference Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell. 2001;106:499–509.CrossRef Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell. 2001;106:499–509.CrossRef
Metadata
Title
Optimization of protocols for pre-embedding immunogold electron microscopy of neurons in cell cultures and brains
Authors
Jung-Hwa Tao-Cheng
Virginia Crocker
Sandra Lara Moreira
Rita Azzam
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00799-2

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue