Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Parkinson's Disease | Research

Fibroblasts from idiopathic Parkinson’s disease exhibit deficiency of lysosomal glucocerebrosidase activity associated with reduced levels of the trafficking receptor LIMP2

Authors: Ria Thomas, Elizabeth B. Moloney, Zachary K. Macbain, Penelope J. Hallett, Ole Isacson

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Lysosomal dysfunction is a central pathway associated with Parkinson’s disease (PD) pathogenesis. Haploinsufficiency of the lysosomal hydrolase GBA (encoding glucocerebrosidase (GCase)) is one of the largest genetic risk factors for developing PD. Deficiencies in the activity of the GCase enzyme have been observed in human tissues from both genetic (harboring mutations in the GBA gene) and idiopathic forms of the disease. To understand the mechanisms behind the deficits of lysosomal GCase enzyme activity in idiopathic PD, this study utilized a large cohort of fibroblast cells from control subjects and PD patients with and without mutations in the GBA gene (N370S mutation) (control, n = 15; idiopathic PD, n = 31; PD with GBA N370S mutation, n = 6). The current data demonstrates that idiopathic PD fibroblasts devoid of any mutations in the GBA gene also exhibit reduction in lysosomal GCase activity, similar to those with the GBA N370S mutation. This reduced GCase enzyme activity in idiopathic PD cells was accompanied by decreased expression of the GBA trafficking receptor, LIMP2, and increased ER retention of the GBA protein in these cells. Importantly, in idiopathic PD fibroblasts LIMP2 protein levels correlated significantly with GCase activity, which was not the case in control subjects or in genetic PD GBA N370S cells. In conclusion, idiopathic PD fibroblasts have decreased GCase activity primarily driven by altered LIMP2-mediated transport of GBA to lysosome and the reduced GCase activity exhibited by  the genetic GBA N370S derived PD fibroblasts occurs through a different mechanism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J Neuroinflammation. 2019;16:153.PubMedPubMedCentralCrossRef Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J Neuroinflammation. 2019;16:153.PubMedPubMedCentralCrossRef
4.
go back to reference Rocha EM, Smith GA, Park E, Cao H, Brown E, Hallett P, et al. Progressive decline of glucocerebrosidase in aging and Parkinson’s disease. Ann Clin Transl Neurol. 2015;2:433–8.PubMedPubMedCentralCrossRef Rocha EM, Smith GA, Park E, Cao H, Brown E, Hallett P, et al. Progressive decline of glucocerebrosidase in aging and Parkinson’s disease. Ann Clin Transl Neurol. 2015;2:433–8.PubMedPubMedCentralCrossRef
5.
go back to reference Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.PubMedPubMedCentralCrossRef Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.PubMedPubMedCentralCrossRef
6.
go back to reference Clark LN, Ross BM, Wang Y, Mejia-Santana H, Harris J, Louis ED, et al. Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology. 2007;69:1270–7.PubMedCrossRef Clark LN, Ross BM, Wang Y, Mejia-Santana H, Harris J, Louis ED, et al. Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology. 2007;69:1270–7.PubMedCrossRef
7.
go back to reference Crosiers D, Verstraeten A, Wauters E, Engelborghs S, Peeters K, Mattheijssens M, et al. Mutations in glucocerebrosidase are a major genetic risk factor for Parkinson’s disease and increase susceptibility to dementia in a Flanders-Belgian cohort. Neurosci Lett. 2016;629:160–4.PubMedCrossRef Crosiers D, Verstraeten A, Wauters E, Engelborghs S, Peeters K, Mattheijssens M, et al. Mutations in glucocerebrosidase are a major genetic risk factor for Parkinson’s disease and increase susceptibility to dementia in a Flanders-Belgian cohort. Neurosci Lett. 2016;629:160–4.PubMedCrossRef
8.
go back to reference Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, Kuo S-H, et al. Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain J Neurol. 2015;138(Pt 9):2648–58.CrossRef Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, Kuo S-H, et al. Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain J Neurol. 2015;138(Pt 9):2648–58.CrossRef
9.
go back to reference García-Sanz P, Orgaz L, Bueno-Gil G, Espadas I, Rodríguez-Traver E, Kulisevsky J, et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson’s disease. Mov Disord. 2017;32:1409–22.PubMedCrossRef García-Sanz P, Orgaz L, Bueno-Gil G, Espadas I, Rodríguez-Traver E, Kulisevsky J, et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson’s disease. Mov Disord. 2017;32:1409–22.PubMedCrossRef
10.
go back to reference Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 2012;72:455–63.PubMedPubMedCentralCrossRef Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 2012;72:455–63.PubMedPubMedCentralCrossRef
12.
go back to reference Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.PubMedPubMedCentralCrossRef Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.PubMedPubMedCentralCrossRef
13.
go back to reference Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, et al. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain. 2014;137:834–48.PubMedPubMedCentralCrossRef Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, et al. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain. 2014;137:834–48.PubMedPubMedCentralCrossRef
14.
go back to reference Panicker LM, Miller D, Park TS, Patel B, Azevedo JL, Awad O, et al. Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci. 2012;109:18054–9.PubMedCrossRefPubMedCentral Panicker LM, Miller D, Park TS, Patel B, Azevedo JL, Awad O, et al. Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci. 2012;109:18054–9.PubMedCrossRefPubMedCentral
15.
go back to reference Parnetti L, Paciotti S, Eusebi P, Dardis A, Zampieri S, Chiasserini D, et al. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in parkinson’s disease patients. Mov Disord. 2017;32:1423–31.PubMedCrossRef Parnetti L, Paciotti S, Eusebi P, Dardis A, Zampieri S, Chiasserini D, et al. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in parkinson’s disease patients. Mov Disord. 2017;32:1423–31.PubMedCrossRef
16.
go back to reference Schöndorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.PubMedCrossRef Schöndorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.PubMedCrossRef
17.
go back to reference Woodard CM, Campos BA, Kuo S-H, Nirenberg MJ, Nestor MW, Zimmer M, et al. iPS cell-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Rep. 2014;9:1173–82.PubMedPubMedCentralCrossRef Woodard CM, Campos BA, Kuo S-H, Nirenberg MJ, Nestor MW, Zimmer M, et al. iPS cell-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Rep. 2014;9:1173–82.PubMedPubMedCentralCrossRef
18.
go back to reference Hallett PJ, Huebecker M, Brekk OR, Moloney EB, Rocha EM, Priestman DA, et al. Glycosphingolipid levels and glucocerebrosidase activity are altered in normal aging of the mouse brain. Neurobiol Aging. 2018;67:189–200.PubMedPubMedCentralCrossRef Hallett PJ, Huebecker M, Brekk OR, Moloney EB, Rocha EM, Priestman DA, et al. Glycosphingolipid levels and glucocerebrosidase activity are altered in normal aging of the mouse brain. Neurobiol Aging. 2018;67:189–200.PubMedPubMedCentralCrossRef
19.
go back to reference Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, et al. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495–503.PubMedCrossRef Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, et al. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495–503.PubMedCrossRef
20.
go back to reference Toffoli M, Smith L, Schapira AHV. The biochemical basis of interactions between glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J Neurochem. 2020;154:11–24.PubMedCrossRef Toffoli M, Smith L, Schapira AHV. The biochemical basis of interactions between glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J Neurochem. 2020;154:11–24.PubMedCrossRef
21.
go back to reference Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, et al. Mannose 6-phosphate-independent lysosomal sorting of LIMP-2. Traffic. 2015;16:1127–36.PubMedCrossRef Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, et al. Mannose 6-phosphate-independent lysosomal sorting of LIMP-2. Traffic. 2015;16:1127–36.PubMedCrossRef
22.
go back to reference Fujita H, Saeki M, Yasunaga K, Ueda T, Imoto T, Himeno M. In vitrobinding study of adaptor protein complex (AP-1) to lysosomal targeting motif (LI-Motif). Biochem Biophys Res Commun. 1999;255:54–8.PubMedCrossRef Fujita H, Saeki M, Yasunaga K, Ueda T, Imoto T, Himeno M. In vitrobinding study of adaptor protein complex (AP-1) to lysosomal targeting motif (LI-Motif). Biochem Biophys Res Commun. 1999;255:54–8.PubMedCrossRef
23.
go back to reference Höning S, Sandoval IV, von Figura K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 1998;17:1304–14.PubMedPubMedCentralCrossRef Höning S, Sandoval IV, von Figura K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 1998;17:1304–14.PubMedPubMedCentralCrossRef
24.
go back to reference Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell. 2007;131:770–83.PubMedCrossRef Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell. 2007;131:770–83.PubMedCrossRef
25.
go back to reference Zunke F, Andresen L, Wesseler S, Groth J, Arnold P, Rothaug M, et al. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proc Natl Acad Sci. 2016;113:3791–6.PubMedCrossRefPubMedCentral Zunke F, Andresen L, Wesseler S, Groth J, Arnold P, Rothaug M, et al. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proc Natl Acad Sci. 2016;113:3791–6.PubMedCrossRefPubMedCentral
26.
go back to reference Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lüllmann-Rauch R, et al. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc Natl Acad Sci. 2014;111:15573–8.PubMedCrossRefPubMedCentral Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lüllmann-Rauch R, et al. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc Natl Acad Sci. 2014;111:15573–8.PubMedCrossRefPubMedCentral
27.
go back to reference Michelakakis H, Xiromerisiou G, Dardiotis E, Bozi M, Vassilatis D, Kountra P-M, et al. Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson’s disease. Mov Disord. 2012;27:400–5.PubMedCrossRef Michelakakis H, Xiromerisiou G, Dardiotis E, Bozi M, Vassilatis D, Kountra P-M, et al. Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson’s disease. Mov Disord. 2012;27:400–5.PubMedCrossRef
28.
go back to reference Alcalay RN, Levy OA, Wolf P, Oliva P, Zhang XK, Waters CH, et al. SCARB2 variants and glucocerebrosidase activity in Parkinson’s disease. NPJ Park Dis. 2016;2:16004.CrossRef Alcalay RN, Levy OA, Wolf P, Oliva P, Zhang XK, Waters CH, et al. SCARB2 variants and glucocerebrosidase activity in Parkinson’s disease. NPJ Park Dis. 2016;2:16004.CrossRef
29.
go back to reference Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011;7:e1002141.PubMedPubMedCentralCrossRef Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011;7:e1002141.PubMedPubMedCentralCrossRef
30.
go back to reference Hopfner F, Schulte EC, Mollenhauer B, Bereznai B, Knauf F, Lichtner P, et al. The role of SCARB2 as susceptibility factor in Parkinson’s disease. Mov Disord. 2013;28:538–40.PubMedCrossRef Hopfner F, Schulte EC, Mollenhauer B, Bereznai B, Knauf F, Lichtner P, et al. The role of SCARB2 as susceptibility factor in Parkinson’s disease. Mov Disord. 2013;28:538–40.PubMedCrossRef
31.
go back to reference Chen Y, Yuan X, Cao B, Wei Q, Ou R, Yang J, et al. No association of FAM47E rs6812193, SCARB2 rs6825004 and STX1B rs4889603 polymorphisms with Parkinson’s disease in a Chinese Han population. J Neural Transm Vienna Austria. 1996;2015(122):1547–52. Chen Y, Yuan X, Cao B, Wei Q, Ou R, Yang J, et al. No association of FAM47E rs6812193, SCARB2 rs6825004 and STX1B rs4889603 polymorphisms with Parkinson’s disease in a Chinese Han population. J Neural Transm Vienna Austria. 1996;2015(122):1547–52.
32.
go back to reference Chen S, Zhang Y, Chen W, Wang Y, Liu J, Rong T-Y, et al. Association study of SCARB2 rs6812193 polymorphism with Parkinson’s disease in Han Chinese. Neurosci Lett. 2012;516:21–3.PubMedCrossRef Chen S, Zhang Y, Chen W, Wang Y, Liu J, Rong T-Y, et al. Association study of SCARB2 rs6812193 polymorphism with Parkinson’s disease in Han Chinese. Neurosci Lett. 2012;516:21–3.PubMedCrossRef
33.
go back to reference Huo Q, Li T, Zhao P, Wang L. Association between rs6812193 polymorphism and sporadic Parkinson’s disease susceptibility. Neurol Sci. 2015;36:1479–81.PubMedCrossRef Huo Q, Li T, Zhao P, Wang L. Association between rs6812193 polymorphism and sporadic Parkinson’s disease susceptibility. Neurol Sci. 2015;36:1479–81.PubMedCrossRef
34.
go back to reference Maniwang E, Tayebi N, Sidransky E. Is Parkinson disease associated with lysosomal intergral membrane protein type-2 ?: challenges in interpreting association data. Mol Genet Metab. 2013;108:269–71.PubMedPubMedCentralCrossRef Maniwang E, Tayebi N, Sidransky E. Is Parkinson disease associated with lysosomal intergral membrane protein type-2 ?: challenges in interpreting association data. Mol Genet Metab. 2013;108:269–71.PubMedPubMedCentralCrossRef
35.
go back to reference Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916.PubMedCrossRef Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916.PubMedCrossRef
36.
go back to reference Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442:920–4.PubMedCrossRef Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442:920–4.PubMedCrossRef
37.
go back to reference Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90:1102–7.PubMedPubMedCentralCrossRef Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90:1102–7.PubMedPubMedCentralCrossRef
38.
go back to reference Chitramuthu BP, Bennett HPJ, Bateman A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain. 2017;140:3081–104.PubMedCrossRef Chitramuthu BP, Bennett HPJ, Bateman A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain. 2017;140:3081–104.PubMedCrossRef
39.
go back to reference Paushter DH, Du H, Feng T, Hu F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol (Berl). 2018;136:1–17.CrossRef Paushter DH, Du H, Feng T, Hu F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol (Berl). 2018;136:1–17.CrossRef
40.
go back to reference Jian J, Tian Q-Y, Hettinghouse A, Zhao S, Liu H, Wei J, et al. Progranulin recruits HSP70 to β-glucocerebrosidase and is therapeutic against Gaucher disease. EBioMedicine. 2016;13:212–24.PubMedPubMedCentralCrossRef Jian J, Tian Q-Y, Hettinghouse A, Zhao S, Liu H, Wei J, et al. Progranulin recruits HSP70 to β-glucocerebrosidase and is therapeutic against Gaucher disease. EBioMedicine. 2016;13:212–24.PubMedPubMedCentralCrossRef
41.
go back to reference Zhou X, Paushter DH, Pagan MD, Kim D, Santos MN, Lieberman RL, et al. Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS ONE. 2019;14:e0212382.PubMedPubMedCentralCrossRef Zhou X, Paushter DH, Pagan MD, Kim D, Santos MN, Lieberman RL, et al. Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS ONE. 2019;14:e0212382.PubMedPubMedCentralCrossRef
42.
go back to reference Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet. 2017;26:2850–63.PubMedPubMedCentralCrossRef Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet. 2017;26:2850–63.PubMedPubMedCentralCrossRef
43.
go back to reference Chen Y, Jian J, Hettinghouse A, Zhao X, Setchell KDR, Sun Y, et al. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med Berl Ger. 2018;96:1359–73.CrossRef Chen Y, Jian J, Hettinghouse A, Zhao X, Setchell KDR, Sun Y, et al. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med Berl Ger. 2018;96:1359–73.CrossRef
45.
go back to reference Valdez C, Ysselstein D, Young TJ, Zheng J, Krainc D. Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet. 2020;29:716–26.PubMedCrossRef Valdez C, Ysselstein D, Young TJ, Zheng J, Krainc D. Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet. 2020;29:716–26.PubMedCrossRef
46.
go back to reference Engelender S, Isacson O. The threshold theory for Parkinson’s disease. Trends Neurosci. 2017;40:4–14.PubMedCrossRef Engelender S, Isacson O. The threshold theory for Parkinson’s disease. Trends Neurosci. 2017;40:4–14.PubMedCrossRef
47.
go back to reference Hallett PJ, McLean JR, Kartunen A, Langston JW, Isacson O. Alpha-synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol Dis. 2012;47:258–67.PubMedPubMedCentralCrossRef Hallett PJ, McLean JR, Kartunen A, Langston JW, Isacson O. Alpha-synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol Dis. 2012;47:258–67.PubMedPubMedCentralCrossRef
48.
go back to reference Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet. 2005;14:1709–25.PubMedCrossRef Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet. 2005;14:1709–25.PubMedCrossRef
50.
go back to reference Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4:141ra90.PubMedPubMedCentralCrossRef Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4:141ra90.PubMedPubMedCentralCrossRef
51.
go back to reference Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, Kunz WS, et al. Primary skin fibroblasts as a model of Parkinson’s disease. Mol Neurobiol. 2012;46:20–7.PubMedPubMedCentralCrossRef Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, Kunz WS, et al. Primary skin fibroblasts as a model of Parkinson’s disease. Mol Neurobiol. 2012;46:20–7.PubMedPubMedCentralCrossRef
52.
go back to reference Korecka JA, Thomas R, Christensen DP, Hinrich AJ, Ferrari EJ, Levy SA, et al. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson’s disease patient fibroblasts. Hum Mol Genet. 2019;28:3232–43.PubMedPubMedCentralCrossRef Korecka JA, Thomas R, Christensen DP, Hinrich AJ, Ferrari EJ, Levy SA, et al. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson’s disease patient fibroblasts. Hum Mol Genet. 2019;28:3232–43.PubMedPubMedCentralCrossRef
55.
go back to reference Thomas R, Hallett PJ, Isacson O. Experimental studies of mitochondrial and lysosomal function in in vitro and in vivo models relevant to Parkinson’s disease genetic risk. Int Rev Neurobiol. 2020;154:279–302.PubMedCrossRef Thomas R, Hallett PJ, Isacson O. Experimental studies of mitochondrial and lysosomal function in in vitro and in vivo models relevant to Parkinson’s disease genetic risk. Int Rev Neurobiol. 2020;154:279–302.PubMedCrossRef
56.
go back to reference Consortium TGte. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.CrossRef Consortium TGte. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.CrossRef
58.
go back to reference Emelyanov AK, Usenko TS, Tesson C, Senkevich KA, Nikolaev MA, Miliukhina IV, et al. Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol Aging. 2018;71:267.e7-267.e10.CrossRef Emelyanov AK, Usenko TS, Tesson C, Senkevich KA, Nikolaev MA, Miliukhina IV, et al. Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol Aging. 2018;71:267.e7-267.e10.CrossRef
59.
go back to reference Ran C, Brodin L, Forsgren L, Westerlund M, Ramezani M, Gellhaar S, et al. Strong association between glucocerebrosidase mutations and Parkinson’s disease in Sweden. Neurobiol Aging. 2016;45:212.e5-212.e11.CrossRef Ran C, Brodin L, Forsgren L, Westerlund M, Ramezani M, Gellhaar S, et al. Strong association between glucocerebrosidase mutations and Parkinson’s disease in Sweden. Neurobiol Aging. 2016;45:212.e5-212.e11.CrossRef
60.
go back to reference Collins LM, Drouin-Ouellet J, Kuan W-L, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson’s disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Research. 2018;6:1751.PubMedCentralCrossRef Collins LM, Drouin-Ouellet J, Kuan W-L, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson’s disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Research. 2018;6:1751.PubMedCentralCrossRef
61.
go back to reference Sanchez-Martinez A, Beavan M, Gegg ME, Chau K-Y, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;6:31380.PubMedPubMedCentralCrossRef Sanchez-Martinez A, Beavan M, Gegg ME, Chau K-Y, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;6:31380.PubMedPubMedCentralCrossRef
62.
63.
go back to reference Velayati A, DePaolo J, Gupta N, Choi JH, Moaven N, Westbroek W, et al. A mutation in SCARB2 is a modifier in Gaucher disease. Hum Mutat. 2011;32:1232–8.PubMedPubMedCentralCrossRef Velayati A, DePaolo J, Gupta N, Choi JH, Moaven N, Westbroek W, et al. A mutation in SCARB2 is a modifier in Gaucher disease. Hum Mutat. 2011;32:1232–8.PubMedPubMedCentralCrossRef
64.
go back to reference Brekk OR, Moskites A, Isacson O, Hallett PJ. Lipid-dependent deposition of alpha-synuclein and Tau on neuronal Secretogranin II-positive vesicular membranes with age. Sci Rep. 2018;8:15207.PubMedPubMedCentralCrossRef Brekk OR, Moskites A, Isacson O, Hallett PJ. Lipid-dependent deposition of alpha-synuclein and Tau on neuronal Secretogranin II-positive vesicular membranes with age. Sci Rep. 2018;8:15207.PubMedPubMedCentralCrossRef
65.
go back to reference Moors TE, Paciotti S, Ingrassia A, Quadri M, Breedveld G, Tasegian A, et al. Characterization of brain lysosomal activities in GBA-related and sporadic Parkinson’s disease and dementia with Lewy bodies. Mol Neurobiol. 2019;56:1344–55.PubMedCrossRef Moors TE, Paciotti S, Ingrassia A, Quadri M, Breedveld G, Tasegian A, et al. Characterization of brain lysosomal activities in GBA-related and sporadic Parkinson’s disease and dementia with Lewy bodies. Mol Neurobiol. 2019;56:1344–55.PubMedCrossRef
66.
go back to reference Bras J, Guerreiro R, Darwent L, Parkkinen L, Ansorge O, Escott-Price V, et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet. 2014;23:6139–46.PubMedPubMedCentralCrossRef Bras J, Guerreiro R, Darwent L, Parkkinen L, Ansorge O, Escott-Price V, et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet. 2014;23:6139–46.PubMedPubMedCentralCrossRef
67.
go back to reference Liu G, Boot B, Locascio JJ, Jansen IE, Winder-Rhodes S, Eberly S, et al. Specifically neuropathic Gaucher’s mutations accelerate cognitive decline in Parkinson’s. Ann Neurol. 2016;80:674–85.PubMedPubMedCentralCrossRef Liu G, Boot B, Locascio JJ, Jansen IE, Winder-Rhodes S, Eberly S, et al. Specifically neuropathic Gaucher’s mutations accelerate cognitive decline in Parkinson’s. Ann Neurol. 2016;80:674–85.PubMedPubMedCentralCrossRef
68.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–8.CrossRef
Metadata
Title
Fibroblasts from idiopathic Parkinson’s disease exhibit deficiency of lysosomal glucocerebrosidase activity associated with reduced levels of the trafficking receptor LIMP2
Authors
Ria Thomas
Elizabeth B. Moloney
Zachary K. Macbain
Penelope J. Hallett
Ole Isacson
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-020-00712-3

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue