Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2018

Open Access 01-12-2018 | Short report

Optimal timing of surgical antimicrobial prophylaxis in laparoscopic surgery: a before-after study

Authors: Akane Takamatsu, Yasuaki Tagashira, Kaori Ishii, Yasuhiro Morita, Yasuharu Tokuda, Hitoshi Honda

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2018

Login to get access

Abstract

Background

The optimal timing of preoperative surgical antimicrobial prophylaxis (SAP) remains uncertain. This study aimed to evaluate the impact of changing the timing of SAP on the incidence of surgical site infection (SSI) in laparoscopic surgery.

Methods

We performed a before-after study from August 2014 through June 2017 to assess the impact of changes in the timing of SAP on the incidence of SSI at a 790-bed tertiary care center in Japan. The intervention was the administration of SAP immediately after the study patients entered the operating room for laparoscopic surgery.

Results

In total, 1397 patients who met the inclusion criteria were analyzed. After the intervention, the median time between the time of SAP completion and the time of surgical incision changed from 8 min to 26 min (p <  0.001), and the number of cases without SAP completion prior to surgical incision decreased (16.8% vs. 1.8%; p <  0.001). However, changes in the overall incidence of SSI did not significantly differ between the pre-intervention and the intervention groups (13.8% vs. 13.2%; p = 0.80).

Conclusions

Although the timing of preoperative SAP improved, the intervention did not have a significant impact on reducing the incidence of SSI in the current study. Besides preoperative SAP, multidisciplinary approaches should be incorporated into projects aimed at comprehensively improving surgical quality to reduce SSI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16:e276–87.CrossRefPubMed Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16:e276–87.CrossRefPubMed
2.
go back to reference Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect. 2013;14:73–156.CrossRef Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect. 2013;14:73–156.CrossRef
3.
go back to reference Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326:281–6.CrossRefPubMed Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326:281–6.CrossRefPubMed
4.
go back to reference Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017;152:784–91.CrossRefPubMed Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017;152:784–91.CrossRefPubMed
5.
go back to reference Morikane K, Honda H, Suzuki S. Factors associated with surgical site infection following gastric surgery in Japan. Infect Control Hosp Epidemiol. 2016;37:1167–72.CrossRefPubMed Morikane K, Honda H, Suzuki S. Factors associated with surgical site infection following gastric surgery in Japan. Infect Control Hosp Epidemiol. 2016;37:1167–72.CrossRefPubMed
6.
go back to reference Morikane K, Honda H, Yamagishi T, Suzuki S, Aminaka M. Factors associated with surgical site infection in colorectal surgery: the Japan nosocomial infections surveillance. Infect Control Hosp Epidemiol. 2014;35:660–6.CrossRefPubMed Morikane K, Honda H, Yamagishi T, Suzuki S, Aminaka M. Factors associated with surgical site infection in colorectal surgery: the Japan nosocomial infections surveillance. Infect Control Hosp Epidemiol. 2014;35:660–6.CrossRefPubMed
7.
go back to reference Horan TC, Gaynes RP, Martone WJ, Jarvis WR. Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13:606–8.CrossRefPubMed Horan TC, Gaynes RP, Martone WJ, Jarvis WR. Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13:606–8.CrossRefPubMed
8.
go back to reference Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20:250–78.CrossRefPubMed Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20:250–78.CrossRefPubMed
9.
go back to reference Koch CG, Li L, Hixson E, Tang A, Gordon S, Longworth D, et al. Is it time to refine? An exploration and simulation of optimal antibiotic timing in general surgery. J Am Coll Surg. 2013;217:628–35.CrossRefPubMed Koch CG, Li L, Hixson E, Tang A, Gordon S, Longworth D, et al. Is it time to refine? An exploration and simulation of optimal antibiotic timing in general surgery. J Am Coll Surg. 2013;217:628–35.CrossRefPubMed
10.
go back to reference Steinberg JP, Braun BI, Hellinger WC, Kusek L, Bozikis MR, Bush AJ, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the trial to reduce antimicrobial prophylaxis errors. Ann Surg. 2009;250:10–6.CrossRefPubMed Steinberg JP, Braun BI, Hellinger WC, Kusek L, Bozikis MR, Bush AJ, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the trial to reduce antimicrobial prophylaxis errors. Ann Surg. 2009;250:10–6.CrossRefPubMed
11.
go back to reference Weber WP, Marti WR, Zwahlen M, Misteli H, Rosenthal R, Reck S, et al. The timing of surgical antimicrobial prophylaxis. Ann Surg. 2008;247:918–26.CrossRefPubMed Weber WP, Marti WR, Zwahlen M, Misteli H, Rosenthal R, Reck S, et al. The timing of surgical antimicrobial prophylaxis. Ann Surg. 2008;247:918–26.CrossRefPubMed
12.
go back to reference de Jonge SW, Gans SL, Atema JJ, Solomkin JS, Dellinger PE, Boermeester MA. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96:e6903.CrossRefPubMed de Jonge SW, Gans SL, Atema JJ, Solomkin JS, Dellinger PE, Boermeester MA. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96:e6903.CrossRefPubMed
13.
go back to reference Weber WP, Mujagic E, Zwahlen M, Bundi M, Hoffmann H, Soysal SD, et al. Timing of surgical antimicrobial prophylaxis: a phase 3 randomised controlled trial. Lancet Infect Dis. 2017;17:605–14.CrossRefPubMed Weber WP, Mujagic E, Zwahlen M, Bundi M, Hoffmann H, Soysal SD, et al. Timing of surgical antimicrobial prophylaxis: a phase 3 randomised controlled trial. Lancet Infect Dis. 2017;17:605–14.CrossRefPubMed
14.
go back to reference Delgado-Rodriguez M, Gomez-Ortega A, Sillero-Arenas M, Llorca J. Epidemiology of surgical-site infections diagnosed after hospital discharge: a prospective cohort study. Infect Control Hosp Epidemiol. 2001;22:24–30.CrossRefPubMed Delgado-Rodriguez M, Gomez-Ortega A, Sillero-Arenas M, Llorca J. Epidemiology of surgical-site infections diagnosed after hospital discharge: a prospective cohort study. Infect Control Hosp Epidemiol. 2001;22:24–30.CrossRefPubMed
15.
go back to reference Kaye KS, Schmit K, Pieper C, Sloane R, Caughlan KF, Sexton DJ, et al. The effect of increasing age on the risk of surgical site infection. J Infect Dis. 2005;191:1056–62.CrossRefPubMed Kaye KS, Schmit K, Pieper C, Sloane R, Caughlan KF, Sexton DJ, et al. The effect of increasing age on the risk of surgical site infection. J Infect Dis. 2005;191:1056–62.CrossRefPubMed
17.
go back to reference Kasatpibal N, Norgaard M, Sorensen HT, Schonheyder HC, Jamulitrat S, Chongsuvivatwong V. Risk of surgical site infection and efficacy of antibiotic prophylaxis: a cohort study of appendectomy patients in Thailand. BMC Infect Dis. 2006;6:111.CrossRefPubMedPubMedCentral Kasatpibal N, Norgaard M, Sorensen HT, Schonheyder HC, Jamulitrat S, Chongsuvivatwong V. Risk of surgical site infection and efficacy of antibiotic prophylaxis: a cohort study of appendectomy patients in Thailand. BMC Infect Dis. 2006;6:111.CrossRefPubMedPubMedCentral
Metadata
Title
Optimal timing of surgical antimicrobial prophylaxis in laparoscopic surgery: a before-after study
Authors
Akane Takamatsu
Yasuaki Tagashira
Kaori Ishii
Yasuhiro Morita
Yasuharu Tokuda
Hitoshi Honda
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2018
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-018-0424-z

Other articles of this Issue 1/2018

Antimicrobial Resistance & Infection Control 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.