Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 5/2005

01-05-2005 | Clinical Investigation

Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy

Authors: Christopher I. Zoumalan, Madhu Agarwal, Alfredo A. Sadun

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 5/2005

Login to get access

Abstract

Purpose

To map and identify the pattern, in vivo, of axonal degeneration in ethambutol-induced optic neuropathy using optical coherence tomography (OCT). Ethambutol is an antimycobacterial agent often used to treat tuberculosis. A serious complication of ethambutol is an optic neuropathy that impairs visual acuity, contrast sensitivity, and color vision. However, early on, when the toxic optic neuropathy is mild and partly reversible, the funduscopic findings are often subtle and easy to miss.

Methods

Three subjects with a history of ethambutol (EMB)-induced optic neuropathy of short-, intermediate-, and long-term visual deficits were administered a full neuro-ophthalmologic examination including visual acuity, color vision, contrast sensitivity, and fundus examination. In addition, OCT (OCT 3000, Humphrey-Zeiss, Dublin, CA) was performed on both eyes of each subject using the retinal nerve fiber layer (RNFL) analysis protocol. OCT interpolates data from 100 points around the optic nerve to effectively map out the RNFL.

Results

The results were compared to the calculated average RNFL of normal eyes accumulated from four prior studies using OCT, n=661. In all subjects with history of EMB-induced optic neuropathy, there was a mean loss of 72% nerve fiber layer thickness in the temporal quadrant (patient A, with eventual recovery of visual acuity and fields, 58% loss; patient B, with intermediate visual deficits, 68% loss; patient C, with chronic visual deficits, 90% loss), with an average mean optic nerve thickness of 26±16 μm. There was a combined mean loss of 46% of fibers from the superior, inferior, and nasal quadrants in the (six) eyes of all three subjects (mean average thickness of 55±29 μm). In both sets (four) of eyes of the subjects with persistent visual deficits (patients B and C), there was an average loss of 79% of nerve fiber thickness in the temporal quadrant.

Conclusions

The OCT results in these patients with EMB-induced optic neuropathy show considerable loss especially of the temporal fibers. This is consistent with prior histopathological studies that show predominant loss of parvo-cellular axons (or small-caliber axons) within the papillo-macular bundle in toxic or hereditary optic neuropathies. OCT can be a valuable tool in the quantitative analysis of optic neuropathies. Additionally, in terms of management of EMB-induced optic neuropathy, it is important to properly manage ethambutol dosing in patients with renal impairment and to achieve proper transition to a maintenance dose once an appropriate loading dose has been reached.
Literature
1.
go back to reference Barron GJ, Tepper L, Iovine G (1974) Ocular toxicity from ethambutol. Am J Ophthalmol 77(2):256–260PubMed Barron GJ, Tepper L, Iovine G (1974) Ocular toxicity from ethambutol. Am J Ophthalmol 77(2):256–260PubMed
2.
go back to reference Buyske DA, Peets E, Sterling W (1966) Pharmacological and biochemical studies on ethambutol in laboratory animals. Ann NY Acad Sci 135(2):711–725PubMed Buyske DA, Peets E, Sterling W (1966) Pharmacological and biochemical studies on ethambutol in laboratory animals. Ann NY Acad Sci 135(2):711–725PubMed
3.
go back to reference Carelli V, Ross-Cisneros FN, Sadun AA (2002) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int 40(6):573–584; ReviewCrossRefPubMed Carelli V, Ross-Cisneros FN, Sadun AA (2002) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int 40(6):573–584; ReviewCrossRefPubMed
4.
go back to reference Carpineto P, Ciancaglini M, Zuppardi E, Falconio G, Doronzo E, Mastropasqua L (2003) Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology 110(1):190–195CrossRefPubMed Carpineto P, Ciancaglini M, Zuppardi E, Falconio G, Doronzo E, Mastropasqua L (2003) Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology 110(1):190–195CrossRefPubMed
5.
go back to reference Cole A, May PM, Williams DR (1983) Metal binding by pharmaceuticals. Part 3. Copper (II) and zinc (II) interactions with isoniazid. Agents Actions 1:91–97 Cole A, May PM, Williams DR (1983) Metal binding by pharmaceuticals. Part 3. Copper (II) and zinc (II) interactions with isoniazid. Agents Actions 1:91–97
6.
go back to reference DeVita EG, Miao M, Sadun AA (1987) Optic neuropathy in ethambutol-treated renal tuberculosis. J Clin Neuro-Ophthalmol 7(2):77–86 DeVita EG, Miao M, Sadun AA (1987) Optic neuropathy in ethambutol-treated renal tuberculosis. J Clin Neuro-Ophthalmol 7(2):77–86
7.
go back to reference Gietzen DW, Leung PM, Rogers QR (1986) Norepinephrine and amino acids in prepyriform cortex of rats fed imbalanced amino acid diets. Physiol Behav 36(6):1071–1080CrossRefPubMed Gietzen DW, Leung PM, Rogers QR (1986) Norepinephrine and amino acids in prepyriform cortex of rats fed imbalanced amino acid diets. Physiol Behav 36(6):1071–1080CrossRefPubMed
8.
go back to reference Hougaard JL, Kessel L, Sander B, Kyvik KO, Sorensen TI, Larsen M (2003) Evaluation of heredity as a determinant of retinal nerve fiber layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 44(7):3011–3016CrossRef Hougaard JL, Kessel L, Sander B, Kyvik KO, Sorensen TI, Larsen M (2003) Evaluation of heredity as a determinant of retinal nerve fiber layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 44(7):3011–3016CrossRef
9.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al (1991) Optical coherence tomography. Science 254(5035):1178–1181PubMed Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al (1991) Optical coherence tomography. Science 254(5035):1178–1181PubMed
10.
go back to reference Hubert JP, Delumeau JC, Glowinski J, Premont J, Doble A (1994) Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action. Br J Pharmacol 113(1):261–267PubMed Hubert JP, Delumeau JC, Glowinski J, Premont J, Doble A (1994) Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action. Br J Pharmacol 113(1):261–267PubMed
11.
go back to reference Jones AL, Sheen NJ, North RV, Morgan JE (2001) The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fibre layer. Br J Ophthalmol 85(6):673–677CrossRefPubMed Jones AL, Sheen NJ, North RV, Morgan JE (2001) The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fibre layer. Br J Ophthalmol 85(6):673–677CrossRefPubMed
12.
go back to reference Kozak SF, Inderlied CB, Hsu HY, Heller KB, Sadun AA (1998) The role of copper on ethambutol’s antimicrobial action and implications for ethambutol-induced optic neuropathy. Diagn Microbiol Infect Dis 30(2):83–87CrossRefPubMed Kozak SF, Inderlied CB, Hsu HY, Heller KB, Sadun AA (1998) The role of copper on ethambutol’s antimicrobial action and implications for ethambutol-induced optic neuropathy. Diagn Microbiol Infect Dis 30(2):83–87CrossRefPubMed
13.
go back to reference Leibold JE (1966) The ocular toxicity of ethambutol and its relation to dose. Ann NY Acad Sci 135(2):904–909PubMed Leibold JE (1966) The ocular toxicity of ethambutol and its relation to dose. Ann NY Acad Sci 135(2):904–909PubMed
14.
go back to reference Liu X, Ling Y, Zhou W, Zheng X, Liang D (2000) Qualitative and quantitative measurement of retinal nerve fiber layer in primary open angle glaucoma by optical coherence tomography. Zhonghua YanKe ZaZhi 36(6):420–424, 428; Chinese Liu X, Ling Y, Zhou W, Zheng X, Liang D (2000) Qualitative and quantitative measurement of retinal nerve fiber layer in primary open angle glaucoma by optical coherence tomography. Zhonghua YanKe ZaZhi 36(6):420–424, 428; Chinese
15.
go back to reference Manabe S, Kashii S, Honda Y, Yamamoto R, Katsuki H, Akaike A (2002) Quantification of axotomized ganglion cell death by explant culture of the rat retina. Neurosci Lett 334(1):33–36CrossRefPubMed Manabe S, Kashii S, Honda Y, Yamamoto R, Katsuki H, Akaike A (2002) Quantification of axotomized ganglion cell death by explant culture of the rat retina. Neurosci Lett 334(1):33–36CrossRefPubMed
16.
go back to reference Mok KH, Lee VW, So KF (2002) Retinal nerve fiber layer measurement of the Hong Kong Chinese population by optical coherence tomography. J Glaucoma 11(6):481–483CrossRefPubMed Mok KH, Lee VW, So KF (2002) Retinal nerve fiber layer measurement of the Hong Kong Chinese population by optical coherence tomography. J Glaucoma 11(6):481–483CrossRefPubMed
17.
go back to reference Monteiro ML, Medeiros FA, Ostroscki MR (2003) Quantitative analysis of axonal loss in band atrophy of the optic nerve using scanning laser polarimetry. Br J Ophthalmol 87(1):32–37CrossRefPubMed Monteiro ML, Medeiros FA, Ostroscki MR (2003) Quantitative analysis of axonal loss in band atrophy of the optic nerve using scanning laser polarimetry. Br J Ophthalmol 87(1):32–37CrossRefPubMed
18.
go back to reference Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102(2):217–229PubMed Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102(2):217–229PubMed
19.
go back to reference Saadati HG, Hsu HY, Heller KB, Sadun AA (1998) A histopathologic and morphometric differentiation of nerves in optic nerve hypoplasia and Leber hereditary optic neuropathy. Arch Ophthalmol 116:911–916PubMed Saadati HG, Hsu HY, Heller KB, Sadun AA (1998) A histopathologic and morphometric differentiation of nerves in optic nerve hypoplasia and Leber hereditary optic neuropathy. Arch Ophthalmol 116:911–916PubMed
20.
go back to reference Sadun A (1998) Acquired mitochondrial impairment as a cause of optic nerve disease. Trans Am Ophthalmol Soc 96:881–923PubMed Sadun A (1998) Acquired mitochondrial impairment as a cause of optic nerve disease. Trans Am Ophthalmol Soc 96:881–923PubMed
21.
go back to reference Sadun AA (2002) Mitochondrial optic neuropathies. J Neurol Neurosurg Psychiatry 72(4):423–425PubMed Sadun AA (2002) Mitochondrial optic neuropathies. J Neurol Neurosurg Psychiatry 72(4):423–425PubMed
22.
go back to reference Sadun AA, Carelli V, Salomao SR, Berezovsky A, Quiros PA, Sadun F, DeNegri AM, Andrade R, Moraes M, Passos A, Kjaer P, Pereira J, Valentino ML, Schein S, Belfort R (2003) Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol 136(2):231–238CrossRefPubMed Sadun AA, Carelli V, Salomao SR, Berezovsky A, Quiros PA, Sadun F, DeNegri AM, Andrade R, Moraes M, Passos A, Kjaer P, Pereira J, Valentino ML, Schein S, Belfort R (2003) Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol 136(2):231–238CrossRefPubMed
23.
go back to reference Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–232; discussion 232–235PubMed Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–232; discussion 232–235PubMed
24.
go back to reference Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG (1995) Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 113(5):586–596PubMed Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG (1995) Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 113(5):586–596PubMed
25.
go back to reference Sivakumaran P, Harrison AC, Marschner J, Martin P (1998) Ocular toxicity from ethambutol: a review of four cases and recommended precautions. NZ Med J 111:428–430; Review Sivakumaran P, Harrison AC, Marschner J, Martin P (1998) Ocular toxicity from ethambutol: a review of four cases and recommended precautions. NZ Med J 111:428–430; Review
26.
go back to reference Smith LJ (1987) Should ethambutol be barred? J Clin Neuro-Ophthalmol 7:84–86 Smith LJ (1987) Should ethambutol be barred? J Clin Neuro-Ophthalmol 7:84–86
27.
go back to reference Tweten S, Wall M, Schwartz BD (1990) A comparison of three clinical methods of spatial contrast sensitivity testing in normal subjects. Graefes Arch Clin Exp Ophthalmol 228:24–27 Tweten S, Wall M, Schwartz BD (1990) A comparison of three clinical methods of spatial contrast sensitivity testing in normal subjects. Graefes Arch Clin Exp Ophthalmol 228:24–27
28.
go back to reference Varma R, Bazzaz S, Lai M (2003) Optical tomography-measured retinal nerve fiber layer thickness in normal Latinos. Invest Ophthalmol Vis Sci 44(8):3369–3373CrossRef Varma R, Bazzaz S, Lai M (2003) Optical tomography-measured retinal nerve fiber layer thickness in normal Latinos. Invest Ophthalmol Vis Sci 44(8):3369–3373CrossRef
29.
go back to reference Weinreb RN, Shakiba S, Sample PA, Shahrokni S, van Horn S, Garden VS, Asawaphureekorn S, Zangwill L (1995) Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. Am J Ophthalmol 120(6):732–738PubMed Weinreb RN, Shakiba S, Sample PA, Shahrokni S, van Horn S, Garden VS, Asawaphureekorn S, Zangwill L (1995) Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. Am J Ophthalmol 120(6):732–738PubMed
30.
go back to reference Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA (1998) Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol 116(12):1583–1589PubMed Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA (1998) Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol 116(12):1583–1589PubMed
31.
go back to reference Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119(7):985–993PubMed Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119(7):985–993PubMed
Metadata
Title
Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy
Authors
Christopher I. Zoumalan
Madhu Agarwal
Alfredo A. Sadun
Publication date
01-05-2005
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 5/2005
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-004-1053-1

Other articles of this Issue 5/2005

Graefe's Archive for Clinical and Experimental Ophthalmology 5/2005 Go to the issue

Announcements

May 2005