Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 5/2005

01-05-2005 | Laboratory Investigation

Subretinal implantation and testing of polyimide film electrodes in cats

Authors: Helmut G. Sachs, Thomas Schanze, Marcus Wilms, Andreas Rentzos, Ursula Brunner, Florian Gekeler, Lutz Hesse

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 5/2005

Login to get access

Abstract

Background

Progress in the field of microelectronics has led to the development of visual prostheses for the treatment of blinding diseases. One concept under investigation is an electronic subretinal prosthesis to replace the function of lost photoreceptors in degenerative diseases, such as retinitis pigmentosa.

Methods

In the subretinal prosthesis design concept, an array of stimulation electrodes is placed in the subretinal space. To test the feasibility of the concept and to determine basic stimulation parameters, wire-bound stimulation devices were used in acute trials for up to 12 h in three eyes in anaesthetised cats. These wire-bound stimulation elements were based on strips of polyimide film. The film strips were introduced through a sclerostomy into the vitreous cavity and via a retinotomy into the subretinal space during a modification of the standard three-port vitrectomy procedure. On entry through the retinotomy, the film was advanced mechanically to the desired position in the area centralis. Perfluorocarbon liquid (PFCL) was used to establish close contact between the electrode array and the outer retina. Stimulation was performed with computer-generated sequences of current waveforms in acute trials immediately after surgical implantation of the stimulation film. Cortical recordings in the primary visual cortex were performed with electrodes placed in locations corresponding to the retinal stimulus site.

Results

All three implantations were carried out successfully with the stimulation array implanted beneath the outer retina of the area centralis of the operated eye. The retina was attached over the stimulation array in all cases. No cortical responses were recorded in one of the stimulation sessions. The results from another session revealed clear intracortical responses to subretinal stimulation with polyimide films. Following single-site retina stimulation, the estimates of spatial cortical resolution and temporal resolution were approximately 1 mm and 20–50 ms, respectively.

Discussion

Our results indicate that focal subretinal stimulation evokes localised spatio-temporal distribution of cortical responses. These findings offer hope that coarse restoration of vision may be feasible by subretinal electrical stimulation.
Literature
1.
go back to reference Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259PubMed Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259PubMed
2.
go back to reference Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willet W (1993) Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol 111:1456–1459PubMed Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willet W (1993) Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol 111:1456–1459PubMed
3.
go back to reference Brindley GS (1973) Sensory effects of electrical stimulation of the visual and paravisual cortex in man. In: Jung R (ed) Handbook of sensory physiology, vol. 7, sect 3B. Springer, Berlin Heidelberg New York, pp 583–594 Brindley GS (1973) Sensory effects of electrical stimulation of the visual and paravisual cortex in man. In: Jung R (ed) Handbook of sensory physiology, vol. 7, sect 3B. Springer, Berlin Heidelberg New York, pp 583–594
4.
go back to reference Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond) 196:479–493 Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond) 196:479–493
5.
go back to reference Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16CrossRefPubMed Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16CrossRefPubMed
6.
go back to reference Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachy NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9:86–95CrossRefPubMed Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachy NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9:86–95CrossRefPubMed
7.
go back to reference Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46:3–9CrossRefPubMed Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46:3–9CrossRefPubMed
8.
go back to reference Dobelle WH, Mladejovsky MG, Girvin JP (1974) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444PubMed Dobelle WH, Mladejovsky MG, Girvin JP (1974) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444PubMed
9.
go back to reference Dobelle WH, Mladejovsky MG, Evans JK, Roberts TS, Girvin JP (1976) ‘Braille’ reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112PubMed Dobelle WH, Mladejovsky MG, Evans JK, Roberts TS, Girvin JP (1976) ‘Braille’ reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112PubMed
10.
go back to reference Eckhorn R, Thomas U (1993) A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. J Neurosci Methods 49:175–179CrossRefPubMed Eckhorn R, Thomas U (1993) A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. J Neurosci Methods 49:175–179CrossRefPubMed
11.
go back to reference Eckmiller R (1995) Towards retina implants for improvement of vision in humans with retinitis pigmentosa—challenges and first results. In: Proc WCNN 95, Washington DC. INNS Press, New Jersey, pp 228–233 Eckmiller R (1995) Towards retina implants for improvement of vision in humans with retinitis pigmentosa—challenges and first results. In: Proc WCNN 95, Washington DC. INNS Press, New Jersey, pp 228–233
12.
go back to reference Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289PubMed Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289PubMed
13.
go back to reference Eckmiller R, Eckhorn R et al (1994) Final report of the feasibility study for a neurotechnology program. In: Eckmiller R (ed) Neurotechnology report. BMBF, Bonn, Germany Eckmiller R, Eckhorn R et al (1994) Final report of the feasibility study for a neurotechnology program. In: Eckmiller R (ed) Neurotechnology report. BMBF, Bonn, Germany
14.
go back to reference Girvin J (1988) Current status of artificial vision by electrocortical stimulation. Can J Neurol Sci 15:58–62PubMed Girvin J (1988) Current status of artificial vision by electrocortical stimulation. Can J Neurol Sci 15:58–62PubMed
15.
go back to reference Haemmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M (2002) Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 23:797–804CrossRefPubMed Haemmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M (2002) Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 23:797–804CrossRefPubMed
16.
go back to reference Hesse L, Schanze T, Wilms M, Eger M (2000) Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes Arch Clin Exp Ophthalmol 238:840–845CrossRefPubMed Hesse L, Schanze T, Wilms M, Eger M (2000) Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes Arch Clin Exp Ophthalmol 238:840–845CrossRefPubMed
17.
go back to reference Humayun M, Propst R, de Juan E, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–116PubMed Humayun M, Propst R, de Juan E, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–116PubMed
18.
go back to reference Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–46PubMed Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–46PubMed
19.
go back to reference Humayun MS, Prince M, de Juan E Jr, Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148PubMed Humayun MS, Prince M, de Juan E Jr, Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148PubMed
20.
go back to reference Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E Jr (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res 43:2573–2581CrossRefPubMed Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E Jr (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res 43:2573–2581CrossRefPubMed
21.
go back to reference Ito N, Shirahata A, Yagi T, Matsushima T, Kawase K, Watanabe M, Uchikawa Y (1997) Development of artificial retina using cultured neural cells and photoelectric device: a study on electric current with membrane model. Proceedings of The 4th International Conference on Neural Information Processing (ICONIP ‘97), pp 124–127 Ito N, Shirahata A, Yagi T, Matsushima T, Kawase K, Watanabe M, Uchikawa Y (1997) Development of artificial retina using cultured neural cells and photoelectric device: a study on electric current with membrane model. Proceedings of The 4th International Conference on Neural Information Processing (ICONIP ‘97), pp 124–127
22.
go back to reference Krumpazsky HG, Klauss V (1996) Epidemiology of blindness and eye disease. Ophthalmologica 210:1–84PubMed Krumpazsky HG, Klauss V (1996) Epidemiology of blindness and eye disease. Ophthalmologica 210:1–84PubMed
23.
go back to reference Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vis Res 39:2577–2587CrossRefPubMed Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vis Res 39:2577–2587CrossRefPubMed
24.
go back to reference Normann RA, Maynard EM, Guillory KS, Warren DJ (1996) Cortical implants for the blind. IEEE Spectrum 33:54–59CrossRef Normann RA, Maynard EM, Guillory KS, Warren DJ (1996) Cortical implants for the blind. IEEE Spectrum 33:54–59CrossRef
25.
go back to reference Rizzo JF, Wyatt J (1997) Prospects for a visual prosthesis. Neuroscientist 3:251–262 Rizzo JF, Wyatt J (1997) Prospects for a visual prosthesis. Neuroscientist 3:251–262
26.
go back to reference Rizzo JF, Loewenstein J, Kelly SK, Shire DB, Herndon T, Wyatt JL (1999) Electrical stimulation of human retina with a microfabricated electrode array. Invest Ophthalmol Vis Sci 40:S783 Rizzo JF, Loewenstein J, Kelly SK, Shire DB, Herndon T, Wyatt JL (1999) Electrical stimulation of human retina with a microfabricated electrode array. Invest Ophthalmol Vis Sci 40:S783
27.
go back to reference Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240:947–954PubMed Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240:947–954PubMed
28.
go back to reference Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–522PubMed Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–522PubMed
29.
go back to reference Sharma S (1999) Ophthaproblem. Ocular ischemic syndrome. Can Fam Physician 45:901, 909PubMed Sharma S (1999) Ophthaproblem. Ocular ischemic syndrome. Can Fam Physician 45:901, 909PubMed
30.
go back to reference Stieglitz T, Blau C, Beutel H, Keller R, Meyer JU (1997) Konzeption und Entwicklung von flexiblen Stimulatorstrukturen innerhalb eines Retina Implant Systems [Conception and development of flexible stimulator structures within a retinal implant system]. Biomed Tech (Berl) 42[Suppl]:458–459 Stieglitz T, Blau C, Beutel H, Keller R, Meyer JU (1997) Konzeption und Entwicklung von flexiblen Stimulatorstrukturen innerhalb eines Retina Implant Systems [Conception and development of flexible stimulator structures within a retinal implant system]. Biomed Tech (Berl) 42[Suppl]:458–459
31.
32.
go back to reference Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186CrossRefPubMed Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186CrossRefPubMed
33.
go back to reference Wilms M (2001) Electrical receptive fields and cortical activation spread in response to electrical retina stimulation. Assessment of spatio-temporal resolution for a retina implant. PhD thesis, Department of Physics, University of Marburg, Germany Wilms M (2001) Electrical receptive fields and cortical activation spread in response to electrical retina stimulation. Assessment of spatio-temporal resolution for a retina implant. PhD thesis, Department of Physics, University of Marburg, Germany
34.
go back to reference Wyatt J, Rizzo J (1996) Ocular implants for the blind. IEEE Spectrum 33:47–53CrossRef Wyatt J, Rizzo J (1996) Ocular implants for the blind. IEEE Spectrum 33:47–53CrossRef
36.
go back to reference Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280PubMed Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280PubMed
37.
go back to reference Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors. Vis Res 39:2555–2567CrossRefPubMed Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors. Vis Res 39:2555–2567CrossRefPubMed
Metadata
Title
Subretinal implantation and testing of polyimide film electrodes in cats
Authors
Helmut G. Sachs
Thomas Schanze
Marcus Wilms
Andreas Rentzos
Ursula Brunner
Florian Gekeler
Lutz Hesse
Publication date
01-05-2005
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 5/2005
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-004-1049-x

Other articles of this Issue 5/2005

Graefe's Archive for Clinical and Experimental Ophthalmology 5/2005 Go to the issue

Announcements

May 2005