Skip to main content
Top
Published in: Virology Journal 1/2012

Open Access 01-12-2012 | Methodology

One-step detection of Bean pod mottle virusin soybean seeds by the reverse-transcription loop-mediated isothermal amplification

Authors: Qi-Wei Wei, Cui Yu, Shu-Ya Zhang, Cui-Yun Yang, Karwitha Miriam, Wen-Na Zhang, Dao-Long Dou, Xiao-Rong Tao

Published in: Virology Journal | Issue 1/2012

Login to get access

Abstract

Background

Bean pod mottle virus (BPMV) is a wide-spread and destructive virus that causes huge economic losses in many countries every year. A sensitive, reliable and specific method for rapid surveillance is urgently needed to prevent further spread of BPMV.

Methods

A degenerate reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primer set was designed on the conserved region of BPMV CP gene. The reaction conditions of RT-LAMP were optimized and the feasibility, specificity and sensitivity of this method to detect BPMV were evaluated using the crude RNA rapidly extracted from soybean seeds.

Results

The optimized RT-LAMP parameters including 6 mM MgCl2, 0.8 M betaine and temperature at 62.5-65°C could successfully amplify the ladder-like bands from BPMV infected soybean seeds. The amplification was very specific to BPMV that no cross-reaction was observed with other soybean viruses. Inclusion of a fluorescent dye makes it easily be detected in-tube by naked eye. The sensitivity of RT-LAMP assay is higher than the conventional RT-PCR under the conditions tested, and the conventional RT-PCR couldn’t be used for detection of BPMV using crude RNA extract from soybean seeds.

Conclusion

A highly efficient and practical method was developed for the detection of BPMV in soybean seeds by the combination of rapid RNA extraction and RT-LAMP. This RT-LAMP method has great potential for rapid BPMV surveillance and will assist in preventing further spread of this devastating virus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Giesler LJ, Ghabrial SA, Hunt TE, Hill JH: Bean pod mottle virus: a threat to US soybean production. Plant Dis. 2002, 86 (12): 1280-1289. 10.1094/PDIS.2002.86.12.1280.CrossRef Giesler LJ, Ghabrial SA, Hunt TE, Hill JH: Bean pod mottle virus: a threat to US soybean production. Plant Dis. 2002, 86 (12): 1280-1289. 10.1094/PDIS.2002.86.12.1280.CrossRef
2.
go back to reference Shen JG, Wang NW, Gao FL, Huang KH, Guo QX: Detection of Bean pod mottle virus in soybean imported from Canada. Plan P. 2009, 35 (6): 127-129. Shen JG, Wang NW, Gao FL, Huang KH, Guo QX: Detection of Bean pod mottle virus in soybean imported from Canada. Plan P. 2009, 35 (6): 127-129.
3.
go back to reference Shen JG, Wang NW, Gao FL, Huang KH, Guo QX: Detection of Bean pod mottle virus by one-step IC-RT-PCR. Chinese Agricultural Science Bulletin. 2009, 25 (1): 176-179. Shen JG, Wang NW, Gao FL, Huang KH, Guo QX: Detection of Bean pod mottle virus by one-step IC-RT-PCR. Chinese Agricultural Science Bulletin. 2009, 25 (1): 176-179.
4.
go back to reference Fang H, Yingbin Z, Zujian W, Yunfeng W: Detection of Bean pod mottle virus by RT-PCR and research on its transmission by insect vector. Acta Agriculturae Boreali-Occidentalis Sinica. 2008, 17 (5): 94-97. Fang H, Yingbin Z, Zujian W, Yunfeng W: Detection of Bean pod mottle virus by RT-PCR and research on its transmission by insect vector. Acta Agriculturae Boreali-Occidentalis Sinica. 2008, 17 (5): 94-97.
5.
go back to reference Wen WG, Cui JX, Zhao XL, Xu Y, Chen XF: Detection of Bean pod mottle virus by semi-nested RT-PCR in imported soybean. Acta Phytopathologica Sinica. 2006, 36 (4): 296-300. Wen WG, Cui JX, Zhao XL, Xu Y, Chen XF: Detection of Bean pod mottle virus by semi-nested RT-PCR in imported soybean. Acta Phytopathologica Sinica. 2006, 36 (4): 296-300.
6.
go back to reference Takahashi Y, Omura T, Shohara K, Tsuchizaki T: Comparison of 4 serological methods for practical detection of 10 viruses of rise in plants and insects. Plant Dis. 1991, 75 (5): 458-461. 10.1094/PD-75-0458.CrossRef Takahashi Y, Omura T, Shohara K, Tsuchizaki T: Comparison of 4 serological methods for practical detection of 10 viruses of rise in plants and insects. Plant Dis. 1991, 75 (5): 458-461. 10.1094/PD-75-0458.CrossRef
7.
go back to reference Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28 (12): 1-7.CrossRef Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28 (12): 1-7.CrossRef
8.
go back to reference Fukuta S, Ohishi K, Yoshida K, Mizukami Y, Ishida A, Kanbe M: Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. J Virol Methods. 2004, 121 (1): 49-55. 10.1016/j.jviromet.2004.05.016.PubMedCrossRef Fukuta S, Ohishi K, Yoshida K, Mizukami Y, Ishida A, Kanbe M: Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. J Virol Methods. 2004, 121 (1): 49-55. 10.1016/j.jviromet.2004.05.016.PubMedCrossRef
9.
go back to reference Varga A, James D: Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods. 2006, 138 (1–2): 184-190.PubMedCrossRef Varga A, James D: Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods. 2006, 138 (1–2): 184-190.PubMedCrossRef
10.
go back to reference Boubourakas IN, Fukuta S, Kyriakopoulou PE: Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2009, 160 (1–2): 63-68.PubMedCrossRef Boubourakas IN, Fukuta S, Kyriakopoulou PE: Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2009, 160 (1–2): 63-68.PubMedCrossRef
11.
go back to reference Hibino H: Biology and epidemiology of rice viruses. Annu Rev Phytopathol. 1996, 34 (1): 249-274. 10.1146/annurev.phyto.34.1.249.PubMedCrossRef Hibino H: Biology and epidemiology of rice viruses. Annu Rev Phytopathol. 1996, 34 (1): 249-274. 10.1146/annurev.phyto.34.1.249.PubMedCrossRef
12.
go back to reference Gu HC, Ghabrial SA: The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology. 2005, 333 (2): 271-283. 10.1016/j.virol.2005.01.020.PubMedCrossRef Gu HC, Ghabrial SA: The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology. 2005, 333 (2): 271-283. 10.1016/j.virol.2005.01.020.PubMedCrossRef
13.
go back to reference Zhang C, Gu H, Ghabrial SA: Molecular characterization of naturally occurring RNA1 recombinants of the Comovirus Bean pod mottle virus. Phytopathology. 2007, 97 (10): 1255-1262. 10.1094/PHYTO-97-10-1255.PubMedCrossRef Zhang C, Gu H, Ghabrial SA: Molecular characterization of naturally occurring RNA1 recombinants of the Comovirus Bean pod mottle virus. Phytopathology. 2007, 97 (10): 1255-1262. 10.1094/PHYTO-97-10-1255.PubMedCrossRef
14.
go back to reference Le DT, Netsu O, Uehara-Ichiki T, Shimizu T, Choi I-R, Omura T, Sasaya T: Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J Virol Methods. 2010, 170 (1–2): 90-93.PubMedCrossRef Le DT, Netsu O, Uehara-Ichiki T, Shimizu T, Choi I-R, Omura T, Sasaya T: Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J Virol Methods. 2010, 170 (1–2): 90-93.PubMedCrossRef
15.
go back to reference Li L, Zhang XZ, He Y, Zhang W: Development of LAMP method for detection of genetically modified soybean. Food Sci Technol. 2010, 35 (11): 311-315. Li L, Zhang XZ, He Y, Zhang W: Development of LAMP method for detection of genetically modified soybean. Food Sci Technol. 2010, 35 (11): 311-315.
16.
go back to reference Chen JS, Huang CL, Zhang XH, Wu ZY: Loop-mediated isothermal amplification for the detection of CaMV 35s promoter in genetically modified maize. Acta Agriculturae Boreali-Sinica. 2011, 26 (4): 8-14. Chen JS, Huang CL, Zhang XH, Wu ZY: Loop-mediated isothermal amplification for the detection of CaMV 35s promoter in genetically modified maize. Acta Agriculturae Boreali-Sinica. 2011, 26 (4): 8-14.
17.
go back to reference Liu J, Huang CL, Wu ZY, Zhang XH, Wang YQ: Detection of Tomato aspermy virus infecting chrysanthemums by LAMP. Scientia Agricultura Sinica. 2010, 43 (6): 1288-1294. Liu J, Huang CL, Wu ZY, Zhang XH, Wang YQ: Detection of Tomato aspermy virus infecting chrysanthemums by LAMP. Scientia Agricultura Sinica. 2010, 43 (6): 1288-1294.
18.
go back to reference Yano A, Ishimaru R, Hujikata R: Rapid and sensitive detection of heat-labile I and heat-stable I enterotoxin genes of enterotoxigenic Escherichia coli by Loop-Mediated Isothermal Amplification. J Microbiol Methods. 2007, 68 (2): 414-420. 10.1016/j.mimet.2006.09.024.PubMedCrossRef Yano A, Ishimaru R, Hujikata R: Rapid and sensitive detection of heat-labile I and heat-stable I enterotoxin genes of enterotoxigenic Escherichia coli by Loop-Mediated Isothermal Amplification. J Microbiol Methods. 2007, 68 (2): 414-420. 10.1016/j.mimet.2006.09.024.PubMedCrossRef
19.
go back to reference Luo L, Yang X, Yu J: Optimal DNA amplification of lab-on-a-chip for loop-mediated isothermal amplification. J Huazhong Univ of Sci & Tech. 2009, 37 (7): 42-45. Luo L, Yang X, Yu J: Optimal DNA amplification of lab-on-a-chip for loop-mediated isothermal amplification. J Huazhong Univ of Sci & Tech. 2009, 37 (7): 42-45.
20.
go back to reference Wang Y, Kang Z, Gao H, Gao Y, Qin L, Lin H, Yu F, Qi X, Wang X: A one-step reverse transcription loop-mediated isothermal amplification for detection and discrimination of infectious bursal disease virus. Virol J. 2011, 8 (108): 1-7. Wang Y, Kang Z, Gao H, Gao Y, Qin L, Lin H, Yu F, Qi X, Wang X: A one-step reverse transcription loop-mediated isothermal amplification for detection and discrimination of infectious bursal disease virus. Virol J. 2011, 8 (108): 1-7.
21.
go back to reference Mori Y, Notomi T: Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009, 15 (2): 62-69. 10.1007/s10156-009-0669-9.PubMedCrossRef Mori Y, Notomi T: Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009, 15 (2): 62-69. 10.1007/s10156-009-0669-9.PubMedCrossRef
22.
go back to reference Chen Y, Ning H, Zhang M: Research on the detection of Potato viruses by one-step RT-PCR and two-step RT-PCR. Chinese Agricultural Science Bulletin. 2010, 26 (11): 298-302. Chen Y, Ning H, Zhang M: Research on the detection of Potato viruses by one-step RT-PCR and two-step RT-PCR. Chinese Agricultural Science Bulletin. 2010, 26 (11): 298-302.
23.
go back to reference Parida M, Posadas G, Inoue S, Hasebe F, Morita K: Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol. 2004, 42 (1): 257-263. 10.1128/JCM.42.1.257-263.2004.PubMedPubMedCentralCrossRef Parida M, Posadas G, Inoue S, Hasebe F, Morita K: Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol. 2004, 42 (1): 257-263. 10.1128/JCM.42.1.257-263.2004.PubMedPubMedCentralCrossRef
Metadata
Title
One-step detection of Bean pod mottle virusin soybean seeds by the reverse-transcription loop-mediated isothermal amplification
Authors
Qi-Wei Wei
Cui Yu
Shu-Ya Zhang
Cui-Yun Yang
Karwitha Miriam
Wen-Na Zhang
Dao-Long Dou
Xiao-Rong Tao
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2012
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-9-187

Other articles of this Issue 1/2012

Virology Journal 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.