Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

Open Access 01-12-2022 | Research

Oblique lateral interbody fusion combined with different internal fixations for the treatment of degenerative lumbar spine disease: a finite element analysis

Authors: Shuyi Zhang, Zhengpeng Liu, Chenshui Lu, Li Zhao, Chao Feng, Yahui Wang, Yilong Zhang

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

Little is known about the biomechanical performance of different internal fixations in oblique lumbar interbody fusion (OLIF). Here, finite element (FE) analysis was used to describe the biomechanics of various internal fixations and compare and explore the stability of each fixation.

Methods

CT scans of a patient with lumbar degenerative disease were performed, and the l3-S1 model was constructed using relevant software. The other five FE models were constructed by simulating the model operation and adding different related implants, including (1) an intact model, (2) a stand-alone (SA) model with no instrument, (3) a unilateral pedicle screw model (UPS), (4) a unilateral pedicle screw contralateral translaminar facet screw model (UPS-CTFS), (5) a bilateral pedicle screw (BPS) model, and (6) a cortical bone trajectory screw model (CBT). Various motion loads were set by FE software to simulate lumbar vertebral activity. The software was also used to extract the range of motion (ROM) of the surgical segment, CAGE and fixation stress in the different models.

Results

The SA group had the greatest ROM and CAGE stress. The ROM of the BPS and UPS-CTFS was not significantly different among motion loadings. Compared with the other three models, the BPS model had lower internal fixation stress among loading conditions, and the CBT screw internal fixation had the highest stress among loads.

Conclusions

The BPS model provided the best biomechanical stability for OLIF. The SA model was relatively less stable. The UPS-CTFS group had reduced ROM in the fusion segments, but the stresses on the internal fixation and CAGE were relatively higher in the than in the BPS group; the CBT group had a lower flexion and extension ROM and higher rotation and lateral flexion ROM than the BPS group. The stability of the CBT group was poorer than that of the BPS and LPS-CTFS groups. The CAGE and internal fixation stress was greater in the CBT group.
Literature
1.
go back to reference The classic. Transplantation of a portion of the tibia into the spine for Pott's disease. A preliminary report. Jama. 57:885. 1911. Clin Orthop Relat R. 1972;87:5–8. The classic. Transplantation of a portion of the tibia into the spine for Pott's disease. A preliminary report. Jama. 57:885. 1911. Clin Orthop Relat R. 1972;87:5–8.
2.
go back to reference The classic: the original paper appeared in the New York Medical Journal. 93:1013. 1911. I. An operation for progressive spinal deformities: a preliminary report of three cases from the service of the orthopaedic hospital. Clin Orthop Relat Res. 1964;35:4–8. The classic: the original paper appeared in the New York Medical Journal. 93:1013. 1911. I. An operation for progressive spinal deformities: a preliminary report of three cases from the service of the orthopaedic hospital. Clin Orthop Relat Res. 1964;35:4–8.
3.
go back to reference Xu DS, Walker CT, Godzik J, Turner JD, Smith W, Uribe JS. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Annals of Translational Medicine. 2018;6(6):104.PubMedPubMedCentralCrossRef Xu DS, Walker CT, Godzik J, Turner JD, Smith W, Uribe JS. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Annals of Translational Medicine. 2018;6(6):104.PubMedPubMedCentralCrossRef
4.
go back to reference Mayer MH. A New Microsurgical Technique for Minimally Invasive Anterior Lumbar Interbody Fusion. Spine. 1997;22(6):691–9.PubMedCrossRef Mayer MH. A New Microsurgical Technique for Minimally Invasive Anterior Lumbar Interbody Fusion. Spine. 1997;22(6):691–9.PubMedCrossRef
5.
go back to reference Silvestre C, Mac-Thiong J, Hilmi R, Roussouly P. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients. Asian Spine J. 2012;6(2):89.PubMedPubMedCentralCrossRef Silvestre C, Mac-Thiong J, Hilmi R, Roussouly P. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients. Asian Spine J. 2012;6(2):89.PubMedPubMedCentralCrossRef
6.
go back to reference Woods KRM, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.PubMedCrossRef Woods KRM, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.PubMedCrossRef
7.
go back to reference Blizzard DJ, Thomas JA. MIS Single-position Lateral and Oblique Lateral Lumbar Interbody Fusion and Bilateral Pedicle Screw Fixation: Feasibility and Perioperative Results. Spine (Phila Pa 1976). 2018;43(6):440–6.CrossRef Blizzard DJ, Thomas JA. MIS Single-position Lateral and Oblique Lateral Lumbar Interbody Fusion and Bilateral Pedicle Screw Fixation: Feasibility and Perioperative Results. Spine (Phila Pa 1976). 2018;43(6):440–6.CrossRef
8.
go back to reference Mehren C, Mayer MH, Zandanell C, Siepe CJ, Korge A. The Oblique Anterolateral Approach to the Lumbar Spine Provides Access to the Lumbar Spine With Few Early Complications. Clin Orthop Relat Res. 2016;474(9):2020–7.PubMedPubMedCentralCrossRef Mehren C, Mayer MH, Zandanell C, Siepe CJ, Korge A. The Oblique Anterolateral Approach to the Lumbar Spine Provides Access to the Lumbar Spine With Few Early Complications. Clin Orthop Relat Res. 2016;474(9):2020–7.PubMedPubMedCentralCrossRef
9.
go back to reference Kr W, Jb B, Ra H. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.CrossRef Kr W, Jb B, Ra H. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.CrossRef
10.
go back to reference Li JXJ, Phan K, Mobbs R. Oblique Lumbar Interbody Fusion: Technical Aspects, Operative Outcomes, and Complications. World Neurosurg. 2017;98:113–23.PubMedCrossRef Li JXJ, Phan K, Mobbs R. Oblique Lumbar Interbody Fusion: Technical Aspects, Operative Outcomes, and Complications. World Neurosurg. 2017;98:113–23.PubMedCrossRef
11.
go back to reference Chung N, Jeon C, Lee H, Kweon H. Preoperative evaluation of left common iliac vein in oblique lateral interbody fusion at L5–S1. Eur Spine J. 2017;26(11):2797–803.PubMedCrossRef Chung N, Jeon C, Lee H, Kweon H. Preoperative evaluation of left common iliac vein in oblique lateral interbody fusion at L5–S1. Eur Spine J. 2017;26(11):2797–803.PubMedCrossRef
12.
go back to reference Jin J, Ryu K, Hur J, Seong J, Kim J, Cho H. Comparative Study of the Difference of Perioperative Complication and Radiologic Results. Clin Spine Surg. 2018;31(1):31–6.PubMedCrossRef Jin J, Ryu K, Hur J, Seong J, Kim J, Cho H. Comparative Study of the Difference of Perioperative Complication and Radiologic Results. Clin Spine Surg. 2018;31(1):31–6.PubMedCrossRef
13.
go back to reference Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, et al. Perioperative Complications in 155 Patients Who Underwent Oblique Lateral Interbody Fusion Surgery. Spine. 2017;42(1):55–62.PubMedCrossRef Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, et al. Perioperative Complications in 155 Patients Who Underwent Oblique Lateral Interbody Fusion Surgery. Spine. 2017;42(1):55–62.PubMedCrossRef
14.
go back to reference Zhu G, Hao Y, Yu L, Cai Y, Yang X. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease. Medicine. 2018;97(40):e12680.PubMedPubMedCentralCrossRef Zhu G, Hao Y, Yu L, Cai Y, Yang X. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease. Medicine. 2018;97(40):e12680.PubMedPubMedCentralCrossRef
15.
go back to reference Lu T, Lu Y. Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg. 2019;129:e890–9.PubMedCrossRef Lu T, Lu Y. Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg. 2019;129:e890–9.PubMedCrossRef
16.
go back to reference Xu H, Ju W, Xu N, Zhang X, Zhu X, Zhu L, Qian X, Wen F, Wu W, Jiang F. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis. Neurosurgery. 2013;73:s198–205. Xu H, Ju W, Xu N, Zhang X, Zhu X, Zhu L, Qian X, Wen F, Wu W, Jiang F. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis. Neurosurgery. 2013;73:s198–205.
17.
go back to reference Simmons ED. Surgical treatment of patients with lumbar spinal stenosis with associated scoliosis. Clin Orthop Relat Res. 2001;384(384):45–53.CrossRef Simmons ED. Surgical treatment of patients with lumbar spinal stenosis with associated scoliosis. Clin Orthop Relat Res. 2001;384(384):45–53.CrossRef
18.
go back to reference Hong L, And H, Ishihara A, Masahiko K, And Y. Characteristics of nerve root compression caused by degenerative lumbar spinal stenosis with scoliosis - ScienceDirect. The Spine Journal. 2003;3(6):524–9. Hong L, And H, Ishihara A, Masahiko K, And Y. Characteristics of nerve root compression caused by degenerative lumbar spinal stenosis with scoliosis - ScienceDirect. The Spine Journal. 2003;3(6):524–9.
19.
go back to reference Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments–a finite element model study. J Biomech. 2009;42(3):341–8.PubMedCrossRef Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments–a finite element model study. J Biomech. 2009;42(3):341–8.PubMedCrossRef
20.
go back to reference Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop. 1984; 189. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop. 1984; 189.
21.
go back to reference Santoni BG, Hynes RA, Mcgilvray KC, Rodriguez-Canessa G, Lyons AS. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009. Santoni BG, Hynes RA, Mcgilvray KC, Rodriguez-Canessa G, Lyons AS. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009.
22.
go back to reference Shim CS, Park SW, Lee S, Lim TJ, Chun K, Kim DH. Biomechanical Evaluation of an Interspinous Stabilizing Device. Locker Spine. 2008;33(22):E820–7.PubMedCrossRef Shim CS, Park SW, Lee S, Lim TJ, Chun K, Kim DH. Biomechanical Evaluation of an Interspinous Stabilizing Device. Locker Spine. 2008;33(22):E820–7.PubMedCrossRef
23.
go back to reference Reis MT, Reyes PM, Altun I, Newcomb AG, Singh V, Chang SW, Kelly BP, Crawford NR. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg Spine. 2016;25(6):720–6.PubMedCrossRef Reis MT, Reyes PM, Altun I, Newcomb AG, Singh V, Chang SW, Kelly BP, Crawford NR. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg Spine. 2016;25(6):720–6.PubMedCrossRef
24.
go back to reference Hussain M, Nassr A, Natarajan RN, An HS, Andersson GBJ. Relationship between biomechanical changes at adjacent segments and number of fused bone grafts in multilevel cervical fusions: a finite element investigation. J Neurosurg Spine. 2014;20(1):22–9.PubMedCrossRef Hussain M, Nassr A, Natarajan RN, An HS, Andersson GBJ. Relationship between biomechanical changes at adjacent segments and number of fused bone grafts in multilevel cervical fusions: a finite element investigation. J Neurosurg Spine. 2014;20(1):22–9.PubMedCrossRef
25.
go back to reference Wang T, Zhao Y, Cai Z, Wang W, Xia Y, Zheng G, Liang Y, Wang Y. Effect of osteoporosis on internal fixation after spinal osteotomy: A finite element analysis. Clin Biomech. 2019;69:178–83.CrossRef Wang T, Zhao Y, Cai Z, Wang W, Xia Y, Zheng G, Liang Y, Wang Y. Effect of osteoporosis on internal fixation after spinal osteotomy: A finite element analysis. Clin Biomech. 2019;69:178–83.CrossRef
26.
go back to reference Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine. 1993;18(11):1531–41.PubMedCrossRef Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine. 1993;18(11):1531–41.PubMedCrossRef
27.
go back to reference Jones AC, Wilcox RK. Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis. Med Eng Phys. 2008;30(10):1287–304.PubMedCrossRef Jones AC, Wilcox RK. Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis. Med Eng Phys. 2008;30(10):1287–304.PubMedCrossRef
28.
go back to reference Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng H. 2002;216(5):281–98.PubMedCrossRef Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng H. 2002;216(5):281–98.PubMedCrossRef
29.
go back to reference Yamamoto I, Panjabi MM, Crisco T, Oxland T. Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint. Spine. 1989;14(11):1256–60.PubMedCrossRef Yamamoto I, Panjabi MM, Crisco T, Oxland T. Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint. Spine. 1989;14(11):1256–60.PubMedCrossRef
30.
go back to reference Pearcy MJ, Tibrewal SB. Axial Rotation and Lateral Bending in the Normal Lumbar Spine Measured by Three-Dimensional Radiography. Spine. 1984;9(6):582–7.PubMedCrossRef Pearcy MJ, Tibrewal SB. Axial Rotation and Lateral Bending in the Normal Lumbar Spine Measured by Three-Dimensional Radiography. Spine. 1984;9(6):582–7.PubMedCrossRef
31.
go back to reference Pearcy, Portek, Shepherd. The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine. 1985. Pearcy, Portek, Shepherd. The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine. 1985.
32.
go back to reference Panjabi M. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am. 1994; 76. Panjabi M. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am. 1994; 76.
33.
go back to reference Kim JS, Seong JH. Endoscope-assisted oblique lumbar interbody fusion for the treatment of cauda equina syndrome: a technical note. Eur Spine J. 2016;26(2):1–7. Kim JS, Seong JH. Endoscope-assisted oblique lumbar interbody fusion for the treatment of cauda equina syndrome: a technical note. Eur Spine J. 2016;26(2):1–7.
34.
go back to reference Zairi F, Sunna TP, Westwick HJ, Weil AG, Wang Z, Boubez G, Shedid D. Mini-open oblique lumbar interbody fusion (OLIF) approach for multi-level discectomy and fusion involving L5–S1: Preliminary experience. Orthop Traumatol Surg Res. 2017;103(2):295–9.PubMedCrossRef Zairi F, Sunna TP, Westwick HJ, Weil AG, Wang Z, Boubez G, Shedid D. Mini-open oblique lumbar interbody fusion (OLIF) approach for multi-level discectomy and fusion involving L5–S1: Preliminary experience. Orthop Traumatol Surg Res. 2017;103(2):295–9.PubMedCrossRef
35.
go back to reference Liu C, Wang J, Zhou Y. Perioperative complications associated with minimally invasive surgery of oblique lumbar interbody fusions for degenerative lumbar diseases in 113 patients. Clin Neurol Neurosur. 2019;184:105381.CrossRef Liu C, Wang J, Zhou Y. Perioperative complications associated with minimally invasive surgery of oblique lumbar interbody fusions for degenerative lumbar diseases in 113 patients. Clin Neurol Neurosur. 2019;184:105381.CrossRef
36.
go back to reference Patel R, Suh S, Kang S, Nam K, Siddiqui S, Chang D, Yang J. The radiologic and clinical outcomes of oblique lateral interbody fusion for correction of adult degenerative lumbar deformity. Indian J Orthop. 2019;53(4):502.PubMedPubMedCentralCrossRef Patel R, Suh S, Kang S, Nam K, Siddiqui S, Chang D, Yang J. The radiologic and clinical outcomes of oblique lateral interbody fusion for correction of adult degenerative lumbar deformity. Indian J Orthop. 2019;53(4):502.PubMedPubMedCentralCrossRef
37.
go back to reference Joseph JR, Smith BW, Marca FL, Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015;39(4):E4.PubMedCrossRef Joseph JR, Smith BW, Marca FL, Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015;39(4):E4.PubMedCrossRef
38.
go back to reference Cao Y, Liu F, Wan S, Liang Y, Jiang C, Feng Z, Jiang X, Chen Z. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Clin Biomech. 2017;49:91–5.CrossRef Cao Y, Liu F, Wan S, Liang Y, Jiang C, Feng Z, Jiang X, Chen Z. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Clin Biomech. 2017;49:91–5.CrossRef
39.
go back to reference Quillo-Olvera J, Lin G, Jo H, Kim J. Complications on minimally invasive oblique lumbar interbody fusion at L2–L5 levels: a review of the literature and surgical strategies. Ann Transl Med. 2018;6(6):101.PubMedPubMedCentralCrossRef Quillo-Olvera J, Lin G, Jo H, Kim J. Complications on minimally invasive oblique lumbar interbody fusion at L2–L5 levels: a review of the literature and surgical strategies. Ann Transl Med. 2018;6(6):101.PubMedPubMedCentralCrossRef
40.
go back to reference Shasti M, Koenig SJ, Nash AB, Bahrami S, Jauregui JJ, O’Hara NN, Jazini E, Gelb DE, Ludwig SC. Biomechanical evaluation of lumbar lateral interbody fusion for the treatment of adjacent segment disease. Spine J. 2019;19(3):545–51.PubMedCrossRef Shasti M, Koenig SJ, Nash AB, Bahrami S, Jauregui JJ, O’Hara NN, Jazini E, Gelb DE, Ludwig SC. Biomechanical evaluation of lumbar lateral interbody fusion for the treatment of adjacent segment disease. Spine J. 2019;19(3):545–51.PubMedCrossRef
41.
go back to reference St CS, Tan JS, Lieberman I. Oblique lumbar interbody fixation: a biomechanical study in human spines. J Spinal Disord Tech. 2012;25(4):183–9.CrossRef St CS, Tan JS, Lieberman I. Oblique lumbar interbody fixation: a biomechanical study in human spines. J Spinal Disord Tech. 2012;25(4):183–9.CrossRef
42.
go back to reference Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.PubMedCrossRef Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.PubMedCrossRef
43.
go back to reference Tempel ZJ, Mcdowell MM, Panczykowski DM, Gandhoke GS, Hamilton DK, Okonkwo DO, Kanter AS. . J Neurosurg Spine. 2017:1–7. Tempel ZJ, Mcdowell MM, Panczykowski DM, Gandhoke GS, Hamilton DK, Okonkwo DO, Kanter AS. . J Neurosurg Spine. 2017:1–7.
44.
go back to reference Pham MH, Jakoi AM, Hsieh PC. Minimally invasive L5–S1 oblique lumbar interbody fusion with anterior plate. Neurosurg Focus. 2016;41(VideoSuppl1):1.PubMed Pham MH, Jakoi AM, Hsieh PC. Minimally invasive L5–S1 oblique lumbar interbody fusion with anterior plate. Neurosurg Focus. 2016;41(VideoSuppl1):1.PubMed
45.
go back to reference Tempel ZJ, Gandhoke GS, Okonkwo DO, Kanter AS. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J. 2015;24(S3):414–9.PubMedCrossRef Tempel ZJ, Gandhoke GS, Okonkwo DO, Kanter AS. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J. 2015;24(S3):414–9.PubMedCrossRef
46.
go back to reference Guo H, Tang Y, Guo D, Zhang S, Li Y, Mo G, Luo P, Zhou T, Ma Y, Liang D, et al. The cement leakage in cement-augmented pedicle screw instrumentation in degenerative lumbosacral diseases: a retrospective analysis of 202 cases and 950 augmented pedicle screws. Eur Spine J. 2019;28(7):1661–9.PubMedCrossRef Guo H, Tang Y, Guo D, Zhang S, Li Y, Mo G, Luo P, Zhou T, Ma Y, Liang D, et al. The cement leakage in cement-augmented pedicle screw instrumentation in degenerative lumbosacral diseases: a retrospective analysis of 202 cases and 950 augmented pedicle screws. Eur Spine J. 2019;28(7):1661–9.PubMedCrossRef
47.
go back to reference Aoki Y, Yamagata M, Nakajima F, Ikeda Y, Shimizu K, Yoshihara M, Iwasaki J, Toyone T, Nakagawa K, Nakajima A, et al. Examining risk factors for posterior migration of fusion cages following transforaminal lumbar interbody fusion: a possible limitation of unilateral pedicle screw fixation. J Neurosurg Spine. 2010;13(3):381–7.PubMedCrossRef Aoki Y, Yamagata M, Nakajima F, Ikeda Y, Shimizu K, Yoshihara M, Iwasaki J, Toyone T, Nakagawa K, Nakajima A, et al. Examining risk factors for posterior migration of fusion cages following transforaminal lumbar interbody fusion: a possible limitation of unilateral pedicle screw fixation. J Neurosurg Spine. 2010;13(3):381–7.PubMedCrossRef
48.
go back to reference Fp M. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat R. 1984;189:125–41. Fp M. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat R. 1984;189:125–41.
49.
go back to reference Kim S, Lim TJ, Paterno J, Kim DH. A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine. 2004;1(1):101–7.PubMedCrossRef Kim S, Lim TJ, Paterno J, Kim DH. A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine. 2004;1(1):101–7.PubMedCrossRef
50.
go back to reference Hu Y, Zhu BK, Yuan ZS, Dong WX, Sun XY, Xu JZ, Chen XG. Anatomic study of the lumbar lamina for safe and effective placement of lumbar translaminar facet screws. J Int Med Res. 2019;47(10):5082–93.PubMedPubMedCentralCrossRef Hu Y, Zhu BK, Yuan ZS, Dong WX, Sun XY, Xu JZ, Chen XG. Anatomic study of the lumbar lamina for safe and effective placement of lumbar translaminar facet screws. J Int Med Res. 2019;47(10):5082–93.PubMedPubMedCentralCrossRef
51.
go back to reference Guo H, Tang Y, Guo D, Luo P, Li Y, Mo G, Ma Y, Peng J, Liang D, Zhang S. Stability Evaluation of Oblique Lumbar Interbody Fusion Constructs with Various Fixation Options: A Finite Element Analysis Based on Three-Dimensional Scanning Models. World Neurosurg. 2020;138:e530–8.PubMedCrossRef Guo H, Tang Y, Guo D, Luo P, Li Y, Mo G, Ma Y, Peng J, Liang D, Zhang S. Stability Evaluation of Oblique Lumbar Interbody Fusion Constructs with Various Fixation Options: A Finite Element Analysis Based on Three-Dimensional Scanning Models. World Neurosurg. 2020;138:e530–8.PubMedCrossRef
52.
go back to reference Cao Y, Zhang W, Liang Y, Feng Z, Jiang C, Chen Z, Jiang X. Translaminar facet joint screw insertion with a rapid prototyping guide template: a cadaver study. Comput Assist Surg. 2019;24(1):1–6.CrossRef Cao Y, Zhang W, Liang Y, Feng Z, Jiang C, Chen Z, Jiang X. Translaminar facet joint screw insertion with a rapid prototyping guide template: a cadaver study. Comput Assist Surg. 2019;24(1):1–6.CrossRef
53.
go back to reference Cao Y, Liu F, Wan S, Liang Y, Jiang C, Feng Z, Jiang X, Chen Z. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Clin Biomech (Bristol, Avon). 2017;49:91–5.CrossRef Cao Y, Liu F, Wan S, Liang Y, Jiang C, Feng Z, Jiang X, Chen Z. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Clin Biomech (Bristol, Avon). 2017;49:91–5.CrossRef
54.
go back to reference Zeng Z, Zhang J, Song Y, Yan W, Wu P, Tang H, Han J. Combination of Percutaneous Unilateral Translaminar Facet Screw Fixation and Interbody Fusion for Treatment of Lower Lumbar Vertebra Diseases: a Follow-Up Study. Orthop Surg. 2014;6(2):110–7.PubMedPubMedCentralCrossRef Zeng Z, Zhang J, Song Y, Yan W, Wu P, Tang H, Han J. Combination of Percutaneous Unilateral Translaminar Facet Screw Fixation and Interbody Fusion for Treatment of Lower Lumbar Vertebra Diseases: a Follow-Up Study. Orthop Surg. 2014;6(2):110–7.PubMedPubMedCentralCrossRef
55.
go back to reference Song C, Chang H, Zhang D, Zhang Y, Shi M, Meng X. Biomechanical Evaluation of Oblique Lumbar Interbody Fusion with Various Fixation Options: A Finite Element Analysis. Orthop Surg. 2021;13(2):517–29.PubMedPubMedCentralCrossRef Song C, Chang H, Zhang D, Zhang Y, Shi M, Meng X. Biomechanical Evaluation of Oblique Lumbar Interbody Fusion with Various Fixation Options: A Finite Element Analysis. Orthop Surg. 2021;13(2):517–29.PubMedPubMedCentralCrossRef
Metadata
Title
Oblique lateral interbody fusion combined with different internal fixations for the treatment of degenerative lumbar spine disease: a finite element analysis
Authors
Shuyi Zhang
Zhengpeng Liu
Chenshui Lu
Li Zhao
Chao Feng
Yahui Wang
Yilong Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05150-x

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue