Skip to main content
Top
Published in: Obesity Surgery 6/2020

01-06-2020 | Obesity | Original Contributions

Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients

Authors: Guolin Chen, Jingshen Zhuang, Qianwen Cui, Shuwen Jiang, Weihua Tao, Wanqun Chen, Shuqing Yu, Lina Wu, Wah Yang, Fucheng Liu, Jingge Yang, Cunchuan Wang, Shiqi Jia

Published in: Obesity Surgery | Issue 6/2020

Login to get access

Abstract

Aims

To explore the intestinal microbiota composition affected by the two most widely used procedures of bariatric surgery, laparoscopic sleeve gastrectomy (LSG) and laparoscopic roux-en-Y gastric bypass (LRYGB), in Chinese obesity patients.

Methods

Stool samples were collected from the obese patients before (n = 87) and with follow-up after the surgery (n = 53). After DNA extraction, 16S rDNA (V3 + V4 regions) sequencing was completed on Illumina HiSeq 2500 sequencing platform. The samples were analyzed base on four groups, pre-LSG (n = 54), pre-LRYGB (n = 33), post-LSG (n = 33), and post-LRYGB (n = 20). The linear mixed models were used to analyze the alteration of intestinal microbiota before and after the surgeries of LSG or LRYGB. Student’s t test and χ2 test were used for analysis of independent groups; Metastats analysis was used to compare the relative abundance of bacteria, and Pearson correlation and Spearman correlation analysis were used to test the correlation between indicated groups.

Results

87 patients were included and 53 (60.92%) of them completed the follow-up (9.60 ± 3.92 months). Body mass index (BMI) decreased from 37.84 ± 6.16 kg/m2 to 26.22 ± 4.33 kg/m2 after LSG and from 45.75 ± 14.26 kg/m2 to 33.15 ± 10.99 kg/m2 after LRYGB. The relative abundance of 5 phyla and 42 genera were altered after the surgery in the cohort. Although no alteration of Firmicutes was observed at phylum level, 54.76% of the altered genera belong to phylum Firmicutes. Both LSG and LRYGB procedures increased the richness and evenness of intestinal microbiota in obese patients after the surgery. Particularly, 33 genera altered after LSG and 19 genera altered after LRYGB, in which 11 genera were common alterations in both procedures.

Conclusion

Both LSG and LRYGB altered the composition of intestinal microbiota in Chinese obesity patients, and particularly increased the richness and evenness of microbiota. Genera belonging to phylum Firmicutes were the most altered bacteria by bariatric surgery. The procedure of LSG resulted in much more pronounced alteration of the intestinal microbiota abundance than that observed in LRYGB. While different genera were altered after LSG and LRYGB procedures, 10 genera were the common altered genera in both procedures. Bacteria altered after LSG and LRYGB were functionally associated with BMI, and with relieving of the metabolic syndromes.
Appendix
Available only for authorised users
Literature
3.
go back to reference Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration, Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet. 2014;383(9921):970–83.CrossRef Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration, Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet. 2014;383(9921):970–83.CrossRef
5.
go back to reference Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRef Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRef
6.
go back to reference Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCrossRef Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCrossRef
7.
go back to reference Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRef Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRef
8.
go back to reference Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRef Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRef
9.
go back to reference Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.PubMedCrossRef Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.PubMedCrossRef
10.
go back to reference Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87(5):1219–23.PubMedCrossRef Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87(5):1219–23.PubMedCrossRef
11.
go back to reference Remely M, Haslberger AG. The microbial epigenome in metabolic syndrome. Mol Asp Med. 2017;54:71–7.CrossRef Remely M, Haslberger AG. The microbial epigenome in metabolic syndrome. Mol Asp Med. 2017;54:71–7.CrossRef
12.
go back to reference Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10(6):729–34.PubMedCrossRef Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10(6):729–34.PubMedCrossRef
13.
go back to reference Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones. 2017;16(3):223–34.PubMedCrossRef Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones. 2017;16(3):223–34.PubMedCrossRef
14.
go back to reference De Luca M, Angrisani L, Himpens J, et al. Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg. 2016;26(8):1659–96.PubMedPubMedCentralCrossRef De Luca M, Angrisani L, Himpens J, et al. Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg. 2016;26(8):1659–96.PubMedPubMedCentralCrossRef
15.
go back to reference Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.PubMedPubMedCentralCrossRef Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.PubMedPubMedCentralCrossRef
16.
go back to reference Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.PubMedPubMedCentralCrossRef Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.PubMedPubMedCentralCrossRef
17.
go back to reference Bays H, Kothari SN, Azagury DE, et al. Lipids and bariatric procedures part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA). Surg Obes Relat Dis. 2016;12(3):468–95.PubMedCrossRef Bays H, Kothari SN, Azagury DE, et al. Lipids and bariatric procedures part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA). Surg Obes Relat Dis. 2016;12(3):468–95.PubMedCrossRef
18.
go back to reference Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.PubMedCrossRef Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.PubMedCrossRef
19.
go back to reference Angrisani L, Santonicola A, Iovino P, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.PubMedCrossRef Angrisani L, Santonicola A, Iovino P, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.PubMedCrossRef
20.
go back to reference English WJ, Demaria EJ, Brethauer SA, et al. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016. Surg Obes Relat Dis. 2018;14(3):259–63.PubMedCrossRef English WJ, Demaria EJ, Brethauer SA, et al. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016. Surg Obes Relat Dis. 2018;14(3):259–63.PubMedCrossRef
21.
go back to reference Lars S, Markku P, Peter JC, et al. Bariatric surgery and long-term cardiovascular events. Jama. 2013;307(1):56–65. Lars S, Markku P, Peter JC, et al. Bariatric surgery and long-term cardiovascular events. Jama. 2013;307(1):56–65.
22.
go back to reference Douglas IJ, Bhaskaran K, Batterham RL, et al. Bariatric surgery in the United Kingdom: a cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med. 2015;12(12):e1001925.PubMedPubMedCentralCrossRef Douglas IJ, Bhaskaran K, Batterham RL, et al. Bariatric surgery in the United Kingdom: a cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med. 2015;12(12):e1001925.PubMedPubMedCentralCrossRef
23.
go back to reference Del Genio G, Limongelli P, Del Genio F, et al. Sleeve gastrectomy improves obstructive sleep apnea syndrome (OSAS): 5 year longitudinal study. Surg Obes Relat Dis. 2016;12(1):70–4.PubMedCrossRef Del Genio G, Limongelli P, Del Genio F, et al. Sleeve gastrectomy improves obstructive sleep apnea syndrome (OSAS): 5 year longitudinal study. Surg Obes Relat Dis. 2016;12(1):70–4.PubMedCrossRef
25.
go back to reference Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedPubMedCentralCrossRef Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedPubMedCentralCrossRef
26.
go back to reference Ishida RK, Faintuch J, Ribeiro AS, et al. Asymptomatic gastric bacterial overgrowth after bariatric surgery: are long-term metabolic consequences possible? Obes Surg. 2014;24(11):1856–61.PubMedCrossRef Ishida RK, Faintuch J, Ribeiro AS, et al. Asymptomatic gastric bacterial overgrowth after bariatric surgery: are long-term metabolic consequences possible? Obes Surg. 2014;24(11):1856–61.PubMedCrossRef
27.
go back to reference Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.PubMedCrossRef Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.PubMedCrossRef
28.
go back to reference Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.PubMedCrossRef Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.PubMedCrossRef
29.
go back to reference Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome medicine. 2016;8(1):67.PubMedPubMedCentralCrossRef Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome medicine. 2016;8(1):67.PubMedPubMedCentralCrossRef
30.
go back to reference Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.PubMedPubMedCentralCrossRef Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.PubMedPubMedCentralCrossRef
31.
go back to reference Shao Y, Ding R, Xu B, et al. Alterations of gut microbiota after roux-en-Y gastric bypass and sleeve gastrectomy in Sprague-Dawley rats. Obes Surg. 2017;27(2):295–302.PubMedCrossRef Shao Y, Ding R, Xu B, et al. Alterations of gut microbiota after roux-en-Y gastric bypass and sleeve gastrectomy in Sprague-Dawley rats. Obes Surg. 2017;27(2):295–302.PubMedCrossRef
32.
go back to reference Yang J, Wang C, Cao G, et al. Long-term effects of laparoscopic sleeve gastrectomy versus roux-en-Y gastric bypass for the treatment of Chinese type 2 diabetes mellitus patients with body mass index 28–35 kg/m(2). BMC Surg. 2015;15:88.PubMedPubMedCentralCrossRef Yang J, Wang C, Cao G, et al. Long-term effects of laparoscopic sleeve gastrectomy versus roux-en-Y gastric bypass for the treatment of Chinese type 2 diabetes mellitus patients with body mass index 28–35 kg/m(2). BMC Surg. 2015;15:88.PubMedPubMedCentralCrossRef
33.
go back to reference Ren Y, Yang W, Yang J, et al. Effect of roux-en-Y gastric bypass with different pouch size in Chinese T2DM patients with BMI 30–35 kg/m2. Obes Surg. 2015;25(3):457–63.PubMedCrossRef Ren Y, Yang W, Yang J, et al. Effect of roux-en-Y gastric bypass with different pouch size in Chinese T2DM patients with BMI 30–35 kg/m2. Obes Surg. 2015;25(3):457–63.PubMedCrossRef
34.
go back to reference Wang C, Yang W, Yang J. Surgical results of laparoscopic roux-en-Y gastric bypass in super obese patients with BMI>/=60 in China. Surg Laparosc Endosc Percutan Tech. 2014;24(6):e216–20.PubMedCrossRef Wang C, Yang W, Yang J. Surgical results of laparoscopic roux-en-Y gastric bypass in super obese patients with BMI>/=60 in China. Surg Laparosc Endosc Percutan Tech. 2014;24(6):e216–20.PubMedCrossRef
35.
go back to reference Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.PubMedPubMedCentralCrossRef Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.PubMedPubMedCentralCrossRef
36.
go back to reference White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352.PubMedPubMedCentralCrossRef White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352.PubMedPubMedCentralCrossRef
37.
go back to reference Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.PubMedPubMedCentralCrossRef Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Aamir K, Khan HU, Sethi G, et al. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes. Pharmacol Res. 2019;152:104602.PubMedCrossRef Aamir K, Khan HU, Sethi G, et al. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes. Pharmacol Res. 2019;152:104602.PubMedCrossRef
40.
go back to reference Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.PubMedPubMedCentralCrossRef Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.PubMedPubMedCentralCrossRef
41.
go back to reference Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.PubMedCrossRef Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.PubMedCrossRef
42.
go back to reference Zoetendal EG, Plugge CM, Akkermans AD, et al. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol. 2003;53(Pt 1):211–5.PubMedCrossRef Zoetendal EG, Plugge CM, Akkermans AD, et al. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol. 2003;53(Pt 1):211–5.PubMedCrossRef
43.
go back to reference Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.PubMedPubMedCentralCrossRef Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.PubMedPubMedCentralCrossRef
44.
45.
go back to reference Chavez-Carbajal A, Nirmalkar K, Perez-Lizaur A, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci. 2019;20(2) Chavez-Carbajal A, Nirmalkar K, Perez-Lizaur A, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci. 2019;20(2)
46.
go back to reference Ussar S, Griffin NW, Bezy O, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22(3):516–30.PubMedPubMedCentralCrossRef Ussar S, Griffin NW, Bezy O, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22(3):516–30.PubMedPubMedCentralCrossRef
47.
go back to reference Liu D, Huang J, Luo Y, et al. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J Agric Food Chem. 2019;67(49):13589–604.PubMedCrossRef Liu D, Huang J, Luo Y, et al. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J Agric Food Chem. 2019;67(49):13589–604.PubMedCrossRef
48.
49.
go back to reference Wang P, Li D, Ke W, et al. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. 2019; Wang P, Li D, Ke W, et al. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. 2019;
50.
go back to reference Mayengbam S, Lambert JE, Parnell JA, et al. Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity. J Nutr Biochem. 2019;64:228–36.PubMedCrossRef Mayengbam S, Lambert JE, Parnell JA, et al. Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity. J Nutr Biochem. 2019;64:228–36.PubMedCrossRef
51.
go back to reference Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200.PubMedPubMedCentralCrossRef Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200.PubMedPubMedCentralCrossRef
52.
53.
go back to reference Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.PubMedCrossRef Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.PubMedCrossRef
54.
go back to reference Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.PubMedCrossRef Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.PubMedCrossRef
55.
go back to reference Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79(8):880–7.PubMedPubMedCentralCrossRef Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79(8):880–7.PubMedPubMedCentralCrossRef
56.
go back to reference Rodriguez-Hernandez AP, Marquez-Corona ML, Pontigo-Loyola AP, et al. Subgingival microbiota of Mexicans with type 2 diabetes with different periodontal and metabolic conditions. Int J Environ Res Public Health. 2019;16(17) Rodriguez-Hernandez AP, Marquez-Corona ML, Pontigo-Loyola AP, et al. Subgingival microbiota of Mexicans with type 2 diabetes with different periodontal and metabolic conditions. Int J Environ Res Public Health. 2019;16(17)
57.
go back to reference Liu H, Pan LL, Lv S, et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front Physiol. 2019;10:1015.PubMedPubMedCentralCrossRef Liu H, Pan LL, Lv S, et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front Physiol. 2019;10:1015.PubMedPubMedCentralCrossRef
58.
go back to reference Ogawa T, Honda-Ogawa M, Ikebe K, et al. Characterizations of oral microbiota in elderly nursing home residents with diabetes. J Oral Sci. 2017;59(4):549–55.PubMedCrossRef Ogawa T, Honda-Ogawa M, Ikebe K, et al. Characterizations of oral microbiota in elderly nursing home residents with diabetes. J Oral Sci. 2017;59(4):549–55.PubMedCrossRef
59.
go back to reference Luo D, Chen K, Li J, et al. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother. 2020;121:109550.PubMedCrossRef Luo D, Chen K, Li J, et al. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother. 2020;121:109550.PubMedCrossRef
60.
go back to reference Pitcher MC, Beatty ER, Harris RM, et al. Sulfur metabolism in ulcerative colitis: investigation of detoxification enzymes in peripheral blood. Dig Dis Sci. 1998;43(9):2080–5.PubMedCrossRef Pitcher MC, Beatty ER, Harris RM, et al. Sulfur metabolism in ulcerative colitis: investigation of detoxification enzymes in peripheral blood. Dig Dis Sci. 1998;43(9):2080–5.PubMedCrossRef
61.
go back to reference Karlsson CL, Onnerfalt J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.CrossRef Karlsson CL, Onnerfalt J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.CrossRef
62.
go back to reference Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.PubMedPubMedCentralCrossRef Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.PubMedPubMedCentralCrossRef
63.
go back to reference Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94.PubMedCrossRef Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94.PubMedCrossRef
64.
go back to reference Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.PubMedCrossRef Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.PubMedCrossRef
65.
go back to reference Haro C, Garcia-Carpintero S, Alcala-Diaz JF, et al. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2016;27:27–31.PubMedCrossRef Haro C, Garcia-Carpintero S, Alcala-Diaz JF, et al. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2016;27:27–31.PubMedCrossRef
66.
go back to reference Wunderlichová L, Buňková L, Koutny M, Jancova P, Buňka F. Formation, degradation, and detoxification of putrescine by foodborne bacteria: a review 2014. Wunderlichová L, Buňková L, Koutny M, Jancova P, Buňka F. Formation, degradation, and detoxification of putrescine by foodborne bacteria: a review 2014.
67.
go back to reference Li JV, Reshat R, Wu Q, et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front Microbiol. 2011;2:183.PubMedPubMedCentral Li JV, Reshat R, Wu Q, et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front Microbiol. 2011;2:183.PubMedPubMedCentral
68.
go back to reference Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.PubMedCrossRef Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.PubMedCrossRef
69.
70.
go back to reference Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.PubMedPubMedCentralCrossRef Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.PubMedPubMedCentralCrossRef
71.
go back to reference Selber-Hnatiw S, Sultana T, Tse W, et al. Metabolic networks of the human gut microbiota. Microbiology+. 2019; Selber-Hnatiw S, Sultana T, Tse W, et al. Metabolic networks of the human gut microbiota. Microbiology+. 2019;
72.
go back to reference Salah M, Azab M, Ramadan A, et al. New insights on obesity and diabetes from gut microbiome alterations in Egyptian adults. Omics. 2019;23(10):477–85.PubMedCrossRef Salah M, Azab M, Ramadan A, et al. New insights on obesity and diabetes from gut microbiome alterations in Egyptian adults. Omics. 2019;23(10):477–85.PubMedCrossRef
Metadata
Title
Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients
Authors
Guolin Chen
Jingshen Zhuang
Qianwen Cui
Shuwen Jiang
Weihua Tao
Wanqun Chen
Shuqing Yu
Lina Wu
Wah Yang
Fucheng Liu
Jingge Yang
Cunchuan Wang
Shiqi Jia
Publication date
01-06-2020
Publisher
Springer US
Published in
Obesity Surgery / Issue 6/2020
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-020-04494-4

Other articles of this Issue 6/2020

Obesity Surgery 6/2020 Go to the issue