Skip to main content
Top
Published in: Inflammation 3/2019

01-06-2019 | Obesity | REVIEW

Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function

Authors: Dufang Ma, Yong Wang, Guofeng Zhou, Yongcheng Wang, Xiao Li

Published in: Inflammation | Issue 3/2019

Login to get access

Abstract

Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.
Literature
1.
go back to reference White, U.A., and J.M. Stephens. 2011. The gp130 receptor cytokine family: Regulators of adipocyte development and function. Current Pharmaceutical Design 17 (4): 340–346.CrossRef White, U.A., and J.M. Stephens. 2011. The gp130 receptor cytokine family: Regulators of adipocyte development and function. Current Pharmaceutical Design 17 (4): 340–346.CrossRef
2.
go back to reference Fujio, Y., M. Maeda, T. Mohri, M. Obana, T. Iwakura, A. Hayama, T. Yamashita, H. Nakayama, and J. Azuma. 2011. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. Journal of Pharmacological Sciences 117 (4): 213–222.CrossRef Fujio, Y., M. Maeda, T. Mohri, M. Obana, T. Iwakura, A. Hayama, T. Yamashita, H. Nakayama, and J. Azuma. 2011. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. Journal of Pharmacological Sciences 117 (4): 213–222.CrossRef
11.
go back to reference Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52 (11): 2784–2789.CrossRef Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52 (11): 2784–2789.CrossRef
13.
go back to reference Bastard, J.P., C. Jardel, E. Bruckert, P. Blondy, J. Capeau, M. Laville, H. Vidal, and B. Hainque. 2000. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology and Metabolism 85 (9): 3338–3342. https://doi.org/10.1210/jcem.85.9.6839.CrossRefPubMed Bastard, J.P., C. Jardel, E. Bruckert, P. Blondy, J. Capeau, M. Laville, H. Vidal, and B. Hainque. 2000. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology and Metabolism 85 (9): 3338–3342. https://​doi.​org/​10.​1210/​jcem.​85.​9.​6839.CrossRefPubMed
16.
go back to reference Mauer, J., B. Chaurasia, J. Goldau, M.C. Vogt, J. Ruud, K.D. Nguyen, S. Theurich, A.C. Hausen, J. Schmitz, H.S. Brönneke, E. Estevez, T.L. Allen, A. Mesaros, L. Partridge, M.A. Febbraio, A. Chawla, F.T. Wunderlich, and J.C. Brüning. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology 15 (5): 423–430. https://doi.org/10.1038/ni.2865. CrossRefPubMedPubMedCentral Mauer, J., B. Chaurasia, J. Goldau, M.C. Vogt, J. Ruud, K.D. Nguyen, S. Theurich, A.C. Hausen, J. Schmitz, H.S. Brönneke, E. Estevez, T.L. Allen, A. Mesaros, L. Partridge, M.A. Febbraio, A. Chawla, F.T. Wunderlich, and J.C. Brüning. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology 15 (5): 423–430. https://​doi.​org/​10.​1038/​ni.​2865.​ CrossRefPubMedPubMedCentral
18.
go back to reference Kraakman, M.J., T.L. Allen, M. Whitham, P. Iliades, H.L. Kammoun, E. Estevez, G.I. Lancaster, and M.A. Febbraio. 2013. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes, Obesity & Metabolism 15 (Suppl 3): 170–175. https://doi.org/10.1111/dom.12170.CrossRef Kraakman, M.J., T.L. Allen, M. Whitham, P. Iliades, H.L. Kammoun, E. Estevez, G.I. Lancaster, and M.A. Febbraio. 2013. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes, Obesity & Metabolism 15 (Suppl 3): 170–175. https://​doi.​org/​10.​1111/​dom.​12170.CrossRef
19.
go back to reference Jostock, T., J. Mullberg, S. Ozbek, R. Atreya, G. Blinn, N. Voltz, M. Fischer, M.F. Neurath, and S. Rose-John. 2001. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. European Journal of Biochemistry 268 (1): 160–167.CrossRef Jostock, T., J. Mullberg, S. Ozbek, R. Atreya, G. Blinn, N. Voltz, M. Fischer, M.F. Neurath, and S. Rose-John. 2001. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. European Journal of Biochemistry 268 (1): 160–167.CrossRef
20.
go back to reference Kraakman, M.J., H.L. Kammoun, T.L. Allen, V. Deswaerte, D.C. Henstridge, E. Estevez, V.B. Matthews, B. Neill, D.A. White, A.J. Murphy, L. Peijs, C. Yang, S. Risis, C.R. Bruce, X.J. du, A. Bobik, R.S. Lee-Young, B.A. Kingwell, A. Vasanthakumar, W. Shi, A. Kallies, G.I. Lancaster, S. Rose-John, and M.A. Febbraio. 2015. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metabolism 21 (3): 403–416. https://doi.org/10.1016/j.cmet.2015.02.006.CrossRefPubMed Kraakman, M.J., H.L. Kammoun, T.L. Allen, V. Deswaerte, D.C. Henstridge, E. Estevez, V.B. Matthews, B. Neill, D.A. White, A.J. Murphy, L. Peijs, C. Yang, S. Risis, C.R. Bruce, X.J. du, A. Bobik, R.S. Lee-Young, B.A. Kingwell, A. Vasanthakumar, W. Shi, A. Kallies, G.I. Lancaster, S. Rose-John, and M.A. Febbraio. 2015. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metabolism 21 (3): 403–416. https://​doi.​org/​10.​1016/​j.​cmet.​2015.​02.​006.CrossRefPubMed
27.
36.
go back to reference Akiyama, Y., N. Kajimura, J. Matsuzaki, Y. Kikuchi, N. Imai, M. Tanigawa, and K. Yamaguchi. 1997. In vivo effect of recombinant human leukemia inhibitory factor in primates. Japanese Journal of Cancer Research 88 (6): 578–583.CrossRef Akiyama, Y., N. Kajimura, J. Matsuzaki, Y. Kikuchi, N. Imai, M. Tanigawa, and K. Yamaguchi. 1997. In vivo effect of recombinant human leukemia inhibitory factor in primates. Japanese Journal of Cancer Research 88 (6): 578–583.CrossRef
38.
go back to reference Aubert, J., S. Dessolin, N. Belmonte, M. Li, F.R. McKenzie, L. Staccini, P. Villageois, B. Barhanin, A. Vernallis, A.G. Smith, G. Ailhaud, and C. Dani. 1999. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. The Journal of Biological Chemistry 274 (35): 24965–24972.CrossRef Aubert, J., S. Dessolin, N. Belmonte, M. Li, F.R. McKenzie, L. Staccini, P. Villageois, B. Barhanin, A. Vernallis, A.G. Smith, G. Ailhaud, and C. Dani. 1999. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. The Journal of Biological Chemistry 274 (35): 24965–24972.CrossRef
42.
go back to reference Mori, M., K. Yamaguchi, and K. Abe. 1989. Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochemical and Biophysical Research Communications 160 (3): 1085–1092.CrossRef Mori, M., K. Yamaguchi, and K. Abe. 1989. Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochemical and Biophysical Research Communications 160 (3): 1085–1092.CrossRef
43.
go back to reference Metcalf, D., N.A. Nicola, and D.P. Gearing. 1990. Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood 76 (1): 50–56.CrossRef Metcalf, D., N.A. Nicola, and D.P. Gearing. 1990. Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood 76 (1): 50–56.CrossRef
46.
go back to reference Beretta, E., H. Dhillon, P.S. Kalra, and S.P. Kalra. 2002. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23 (5): 975–984.CrossRef Beretta, E., H. Dhillon, P.S. Kalra, and S.P. Kalra. 2002. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23 (5): 975–984.CrossRef
49.
go back to reference Miller, R.G., J.H. Petajan, W.W. Bryan, C. Armon, R.J. Barohn, J.C. Goodpasture, R.J. Hoagland, G.J. Parry, M.A. Ross, and S.C. Stromatt. 1996. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis rhCNTF ALS Study Group. Ann Neurol 39 (2): 256–260. https://doi.org/10.1002/ana.410390215.CrossRef Miller, R.G., J.H. Petajan, W.W. Bryan, C. Armon, R.J. Barohn, J.C. Goodpasture, R.J. Hoagland, G.J. Parry, M.A. Ross, and S.C. Stromatt. 1996. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis rhCNTF ALS Study Group. Ann Neurol 39 (2): 256–260. https://​doi.​org/​10.​1002/​ana.​410390215.CrossRef
50.
go back to reference A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. 1996. Neurology 46 (5): 1244–1249.CrossRef A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. 1996. Neurology 46 (5): 1244–1249.CrossRef
51.
go back to reference Bluher, S., S. Moschos, J. Bullen Jr., E. Kokkotou, E. Maratos-Flier, S.J. Wiegand, M.W. Sleeman, and C.S. Mantzoros. 2004. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53 (11): 2787–2796.CrossRef Bluher, S., S. Moschos, J. Bullen Jr., E. Kokkotou, E. Maratos-Flier, S.J. Wiegand, M.W. Sleeman, and C.S. Mantzoros. 2004. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53 (11): 2787–2796.CrossRef
52.
go back to reference Ott, V., M. Fasshauer, A. Dalski, H.H. Klein, and J. Klein. 2002. Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. The Journal of Endocrinology 173 (2): R1–R8.CrossRef Ott, V., M. Fasshauer, A. Dalski, H.H. Klein, and J. Klein. 2002. Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. The Journal of Endocrinology 173 (2): R1–R8.CrossRef
54.
go back to reference Watt, M.J., A. Hevener, G.I. Lancaster, and M.A. Febbraio. 2006. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147 (5): 2077–2085. https://doi.org/10.1210/en.2005-1074.CrossRefPubMed Watt, M.J., A. Hevener, G.I. Lancaster, and M.A. Febbraio. 2006. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147 (5): 2077–2085. https://​doi.​org/​10.​1210/​en.​2005-1074.CrossRefPubMed
55.
62.
go back to reference Lopez-Yoldi, M., B. Marcos-Gomez, M.A. Romero-Lozano, N. Sainz, J. Prieto, J.A. Martinez, M. Bustos, and M.J. Moreno-Aliaga. 2017. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology 232 (9): 2469–2477. https://doi.org/10.1002/jcp.25590.CrossRefPubMed Lopez-Yoldi, M., B. Marcos-Gomez, M.A. Romero-Lozano, N. Sainz, J. Prieto, J.A. Martinez, M. Bustos, and M.J. Moreno-Aliaga. 2017. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology 232 (9): 2469–2477. https://​doi.​org/​10.​1002/​jcp.​25590.CrossRefPubMed
63.
64.
go back to reference Vespasiani-Gentilucci, U., A. De Vincentis, J. Argemi, G. Galati, E. Anso, G. Patti, and A. Picardi. 2013. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Archives of Medical Science 9 (4): 635–639. https://doi.org/10.5114/aoms.2013.37272.CrossRefPubMed Vespasiani-Gentilucci, U., A. De Vincentis, J. Argemi, G. Galati, E. Anso, G. Patti, and A. Picardi. 2013. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Archives of Medical Science 9 (4): 635–639. https://​doi.​org/​10.​5114/​aoms.​2013.​37272.CrossRefPubMed
68.
go back to reference Rendo-Urteaga, T., S. Garcia-Calzon, E. Martinez-Anso, M. Chueca, M. Oyarzabal, M.C. Azcona-Sanjulian, M. Bustos, M.J. Moreno-Aliaga, J.A. Martinez, and A. Marti. 2013. Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62 (10): 1429–1436. https://doi.org/10.1016/j.metabol.2013.05.011.CrossRefPubMed Rendo-Urteaga, T., S. Garcia-Calzon, E. Martinez-Anso, M. Chueca, M. Oyarzabal, M.C. Azcona-Sanjulian, M. Bustos, M.J. Moreno-Aliaga, J.A. Martinez, and A. Marti. 2013. Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62 (10): 1429–1436. https://​doi.​org/​10.​1016/​j.​metabol.​2013.​05.​011.CrossRefPubMed
69.
go back to reference Rose, T.M., and A.G. Bruce. 1991. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proceedings of the National Academy of Sciences of the United States of America 88 (19): 8641–8645.CrossRef Rose, T.M., and A.G. Bruce. 1991. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proceedings of the National Academy of Sciences of the United States of America 88 (19): 8641–8645.CrossRef
71.
go back to reference Tanaka, M., T. Hara, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and A. Miyajima. 1999. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor beta subunit. Blood 93 (3): 804–815.CrossRef Tanaka, M., T. Hara, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and A. Miyajima. 1999. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor beta subunit. Blood 93 (3): 804–815.CrossRef
72.
go back to reference Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 99 (2): E217–E225. https://doi.org/10.1210/jc.2013-3555.CrossRefPubMed Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 99 (2): E217–E225. https://​doi.​org/​10.​1210/​jc.​2013-3555.CrossRefPubMed
76.
go back to reference Hattori, K., T. Sumi, T. Yasui, M. Morimura, H. Nobeyama, E. Okamoto, M. Noriyuki, K. Honda, H. Kiyama, and O. Ishiko. 2004. VEGF mRNA in adipocytes increase with rebound weight-gain after diet-restriction. International Journal of Molecular Medicine 13 (3): 395–399.PubMed Hattori, K., T. Sumi, T. Yasui, M. Morimura, H. Nobeyama, E. Okamoto, M. Noriyuki, K. Honda, H. Kiyama, and O. Ishiko. 2004. VEGF mRNA in adipocytes increase with rebound weight-gain after diet-restriction. International Journal of Molecular Medicine 13 (3): 395–399.PubMed
77.
go back to reference Rega, G., C. Kaun, S. Demyanets, S. Pfaffenberger, K. Rychli, P.J. Hohensinner, S.P. Kastl, W.S. Speidl, T.W. Weiss, J.M. Breuss, A. Furnkranz, P. Uhrin, J. Zaujec, V. Zilberfarb, M. Frey, R. Roehle, G. Maurer, K. Huber, and J. Wojta. 2007. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (7): 1587–1595. https://doi.org/10.1161/atvbaha.107.143081.CrossRef Rega, G., C. Kaun, S. Demyanets, S. Pfaffenberger, K. Rychli, P.J. Hohensinner, S.P. Kastl, W.S. Speidl, T.W. Weiss, J.M. Breuss, A. Furnkranz, P. Uhrin, J. Zaujec, V. Zilberfarb, M. Frey, R. Roehle, G. Maurer, K. Huber, and J. Wojta. 2007. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (7): 1587–1595. https://​doi.​org/​10.​1161/​atvbaha.​107.​143081.CrossRef
Metadata
Title
Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function
Authors
Dufang Ma
Yong Wang
Guofeng Zhou
Yongcheng Wang
Xiao Li
Publication date
01-06-2019
Publisher
Springer US
Published in
Inflammation / Issue 3/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00959-6

Other articles of this Issue 3/2019

Inflammation 3/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.