Skip to main content
Top
Published in: Journal of Diabetes & Metabolic Disorders 1/2019

01-06-2019 | Obesity | Commentary

Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs

Authors: Hanieh-Sadat Ejtahed, Shirin Hasani-Ranjbar

Published in: Journal of Diabetes & Metabolic Disorders | Issue 1/2019

Login to get access

Abstract

Considering the increasing prevalence of obesity worldwide, new approaches for its control have been investigated. Recent evidences highlighted the role of the gut microbiome in weight management. Obesity-associated gut microbiota alters host energy uptake, insulin sensitivity, inflammation, and fat storage. Moreover, the gut microbiota-derived metabolites could control appetite directly by affecting the central nervous system or indirectly through modifying the gut hormones secretion. Metabolites of the gut microbiome-brain axis could be novel targets for designing drugs in obesity. They can be prescribed directly like butyrate or can be modulated by manipulating the gut microbiota through probiotics, prebiotics and other dietary components such as polyphenols. Microbiome studies are trying to identify novel microbial species as next-generation probiotics to restore healthy gut microbiota composition and combat obesity and its related complications. According to the relationships between the gut microbiota and microbial composition of other parts of the body, the mechanisms linking the gut-brain axis and the whole human microbiota should be elucidated to provide novel anti-obesity strategies.
Literature
1.
go back to reference Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.CrossRefPubMed Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.CrossRefPubMed
2.
go back to reference Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res. 2016;48(6):349–58.CrossRefPubMed Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res. 2016;48(6):349–58.CrossRefPubMed
3.
go back to reference Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747–56.CrossRefPubMed Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747–56.CrossRefPubMed
4.
go back to reference Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48(8):735–53.CrossRefPubMed Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48(8):735–53.CrossRefPubMed
5.
go back to reference Ejtahed HS, Hasani-Ranjbar S, Larijani B. Human microbiome as an approach to personalized medicine. Altern Ther Health Med. 2017;23(6):8–9.PubMed Ejtahed HS, Hasani-Ranjbar S, Larijani B. Human microbiome as an approach to personalized medicine. Altern Ther Health Med. 2017;23(6):8–9.PubMed
6.
go back to reference Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27(2):201–14.CrossRefPubMedPubMedCentral Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27(2):201–14.CrossRefPubMedPubMedCentral
7.
go back to reference Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefPubMed Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefPubMed
8.
9.
go back to reference Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMed Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMed
10.
11.
go back to reference Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044(1):127–31.CrossRefPubMed Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044(1):127–31.CrossRefPubMed
13.
go back to reference Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of Liraglutide and Saxagliptin treatment. Sci Rep. 2016;6:33251.CrossRefPubMedPubMedCentral Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of Liraglutide and Saxagliptin treatment. Sci Rep. 2016;6:33251.CrossRefPubMedPubMedCentral
14.
go back to reference Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of Glp-1 and improves Glycemia in male mice. Endocrinology. 2017;158(10):3416–25.CrossRefPubMed Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of Glp-1 and improves Glycemia in male mice. Endocrinology. 2017;158(10):3416–25.CrossRefPubMed
15.
go back to reference van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018.
17.
go back to reference Aguilar EC, da Silva JF, Navia-Pelaez JM, Leonel AJ, Lopes LG, Menezes-Garcia Z, et al. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice. Nutrition. 2018;47:75–82.CrossRefPubMed Aguilar EC, da Silva JF, Navia-Pelaez JM, Leonel AJ, Lopes LG, Menezes-Garcia Z, et al. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice. Nutrition. 2018;47:75–82.CrossRefPubMed
18.
go back to reference Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79.CrossRefPubMed Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79.CrossRefPubMed
19.
go back to reference de Vadder F, Mithieux G. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J Endocrinol. 2018;236(2):R105–R8.CrossRefPubMed de Vadder F, Mithieux G. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J Endocrinol. 2018;236(2):R105–R8.CrossRefPubMed
20.
go back to reference De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016;24(1):151–7.CrossRefPubMed De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016;24(1):151–7.CrossRefPubMed
21.
go back to reference Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39–51.CrossRef Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39–51.CrossRef
22.
go back to reference Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303–10.CrossRefPubMed Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303–10.CrossRefPubMed
23.
go back to reference O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the Spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057.CrossRefPubMed O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the Spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057.CrossRefPubMed
Metadata
Title
Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs
Authors
Hanieh-Sadat Ejtahed
Shirin Hasani-Ranjbar
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Journal of Diabetes & Metabolic Disorders / Issue 1/2019
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-019-00384-4

Other articles of this Issue 1/2019

Journal of Diabetes & Metabolic Disorders 1/2019 Go to the issue