Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Obesity | Research article

Later achievement of infant motor milestones is related to lower levels of physical activity during childhood: the GECKO Drenthe cohort

Authors: Silvia I. Brouwer, Ronald P. Stolk, Eva Corpeleijn

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

The aim of this study is to investigate whether age of infant motor milestone achievement is related to levels of physical activity (PA), weight status and blood pressure at age 4–7 years of age.

Methods

In the Dutch GECKO (Groningen Expert Center of Kids with Obesity) Drenthe cohort, the age of achieving the motor milestone ‘walking without support’ was reported by parents. Weight status and blood pressure were assessed by trained health nurses and PA was measured using the Actigraph GT3X between age 4 and 7 years.

Results

Adjusted for children’s age, sex and the mother’s education level, infants who achieved walking without support at a later age, spent more time in sedentary behaviour during childhood and less time in moderate-to-vigorous PA. Later motor milestones achievement was not related to higher BMI Z-score, waist circumference Z-score, diastolic or systolic blood pressure.

Conclusion

The results of this study indicate that a later age of achieving motor milestone within the normal range have a weak relation to lower PA levels at later age. It is not likely that this will have consequences for weight status or blood pressure at 4–7 years of age.
Literature
1.
go back to reference Carson V, Lee EY, Hewitt L, Jennings C, Hunter S, Kuzik N, Stearns JA, Unrau SP, Poitras VJ, Gray C, Adamo KB, Janssen I, Okely AD, Spence JC, Timmons BW, Sampson M, Tremblay MS. Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years). BMC Public Health. 2017;17(Suppl 5):854–017.PubMedPubMedCentralCrossRef Carson V, Lee EY, Hewitt L, Jennings C, Hunter S, Kuzik N, Stearns JA, Unrau SP, Poitras VJ, Gray C, Adamo KB, Janssen I, Okely AD, Spence JC, Timmons BW, Sampson M, Tremblay MS. Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years). BMC Public Health. 2017;17(Suppl 5):854–017.PubMedPubMedCentralCrossRef
2.
go back to reference Timmons BW, Leblanc AG, Carson V, Connor Gorber S, Dillman C, Janssen I, Kho ME, Spence JC, Stearns JA, Tremblay MS. Systematic review of physical activity and health in the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(4):773–92.PubMedCrossRef Timmons BW, Leblanc AG, Carson V, Connor Gorber S, Dillman C, Janssen I, Kho ME, Spence JC, Stearns JA, Tremblay MS. Systematic review of physical activity and health in the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(4):773–92.PubMedCrossRef
3.
go back to reference Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am J Prev Med. 2013;44(6):651–8.PubMedCrossRef Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am J Prev Med. 2013;44(6):651–8.PubMedCrossRef
4.
go back to reference Telama R, Yang X, Leskinen E, Kankaanpaa A, Hirvensalo M, Tammelin T, Viikari JS, Raitakari OT. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.PubMedCrossRef Telama R, Yang X, Leskinen E, Kankaanpaa A, Hirvensalo M, Tammelin T, Viikari JS, Raitakari OT. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.PubMedCrossRef
5.
go back to reference Cohen KE, Morgan PJ, Plotnikoff RC, Callister R, Lubans DR. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study. Int J Behav Nutr Phys Act. 2014;11(1):49–5868.PubMedPubMedCentralCrossRef Cohen KE, Morgan PJ, Plotnikoff RC, Callister R, Lubans DR. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study. Int J Behav Nutr Phys Act. 2014;11(1):49–5868.PubMedPubMedCentralCrossRef
6.
go back to reference Foweather L, Knowles Z, Ridgers ND, O’Dwyer MV, Foulkes JD, Stratton G. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children. J Sci Med Sport. 2015;18(6):691–6.PubMedCrossRef Foweather L, Knowles Z, Ridgers ND, O’Dwyer MV, Foulkes JD, Stratton G. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children. J Sci Med Sport. 2015;18(6):691–6.PubMedCrossRef
7.
go back to reference Williams HG, Pfeiffer KA, Dowda M, Jeter C, Jones S, Pate RR. A field-based testing protocol for assessing gross motor skills in preschool children: the CHAMPS motor skills protocol (CMSP). Meas Phys Educ Exerc Sci. 2009;13(3):151–65.PubMedPubMedCentralCrossRef Williams HG, Pfeiffer KA, Dowda M, Jeter C, Jones S, Pate RR. A field-based testing protocol for assessing gross motor skills in preschool children: the CHAMPS motor skills protocol (CMSP). Meas Phys Educ Exerc Sci. 2009;13(3):151–65.PubMedPubMedCentralCrossRef
8.
go back to reference Lopes L, Santos R, Pereira B, Lopes VP. Associations between sedentary behavior and motor coordination in children. Am J Hum Biol. 2012;24(6):746–52.PubMedCrossRef Lopes L, Santos R, Pereira B, Lopes VP. Associations between sedentary behavior and motor coordination in children. Am J Hum Biol. 2012;24(6):746–52.PubMedCrossRef
9.
go back to reference Barnett LM, Morgan PJ, Van Beurden E, Ball K, Lubans DR. A reverse pathway? Actual and perceived skill proficiency and physical activity. Med Sci Sports Exerc. 2011;43(5):898–904.PubMedCrossRef Barnett LM, Morgan PJ, Van Beurden E, Ball K, Lubans DR. A reverse pathway? Actual and perceived skill proficiency and physical activity. Med Sci Sports Exerc. 2011;43(5):898–904.PubMedCrossRef
10.
go back to reference Barnett LM, van Beurden E, Morgan PJ, Brooks LO, Beard JR. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health. 2009;44(3):252–9.PubMedCrossRef Barnett LM, van Beurden E, Morgan PJ, Brooks LO, Beard JR. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health. 2009;44(3):252–9.PubMedCrossRef
11.
go back to reference Barnett LM, Salmon J, Hesketh KD. More active pre-school children have better motor competence at school starting age: an observational cohort study. BMC Public Health. 2016;16(1):1068–16.PubMedPubMedCentralCrossRef Barnett LM, Salmon J, Hesketh KD. More active pre-school children have better motor competence at school starting age: an observational cohort study. BMC Public Health. 2016;16(1):1068–16.PubMedPubMedCentralCrossRef
12.
go back to reference Oglund GP, Hildebrand M, Ekelund U. Are birth weight, early growth, and motor development determinants of physical activity in children and youth? A systematic review and meta-analysis. Pediatr Exerc Sci. 2015;27(4):441–53.PubMedCrossRef Oglund GP, Hildebrand M, Ekelund U. Are birth weight, early growth, and motor development determinants of physical activity in children and youth? A systematic review and meta-analysis. Pediatr Exerc Sci. 2015;27(4):441–53.PubMedCrossRef
13.
go back to reference Wijtzes AI, Kooijman MN, Kiefte-de Jong JC, de Vries SI, Henrichs J, Jansen W, Jaddoe VW, Hofman A, Moll HA, Raat H. Correlates of physical activity in 2-year-old toddlers: the generation R study. J Pediatr. 2013;163(3):791–9.e1.PubMedCrossRef Wijtzes AI, Kooijman MN, Kiefte-de Jong JC, de Vries SI, Henrichs J, Jansen W, Jaddoe VW, Hofman A, Moll HA, Raat H. Correlates of physical activity in 2-year-old toddlers: the generation R study. J Pediatr. 2013;163(3):791–9.e1.PubMedCrossRef
14.
go back to reference Mattocks C, Deere K, Leary S, Ness A, Tilling K, Blair SN, Riddoch C. Early life determinants of physical activity in 11 to 12 year olds: cohort study. Br J Sports Med. 2008;42(9):721–4.PubMed Mattocks C, Deere K, Leary S, Ness A, Tilling K, Blair SN, Riddoch C. Early life determinants of physical activity in 11 to 12 year olds: cohort study. Br J Sports Med. 2008;42(9):721–4.PubMed
16.
go back to reference Barnett LM, Lai SK, Veldman SLC, Hardy LL, Cliff DP, Morgan PJ, Zask A, Lubans DR, Shultz SP, Ridgers ND, Rush E, Brown HL, Okely AD. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):1663–88.PubMedPubMedCentralCrossRef Barnett LM, Lai SK, Veldman SLC, Hardy LL, Cliff DP, Morgan PJ, Zask A, Lubans DR, Shultz SP, Ridgers ND, Rush E, Brown HL, Okely AD. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):1663–88.PubMedPubMedCentralCrossRef
17.
go back to reference Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. Sports Med. 2010;40(12):1019–35.PubMedCrossRef Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. Sports Med. 2010;40(12):1019–35.PubMedCrossRef
18.
go back to reference Milne N, Leong GM, Hing W. The relationship between children's motor proficiency and health-related fitness. J Paediatr Child Health. 2016;52(8):825–31.PubMedCrossRef Milne N, Leong GM, Hing W. The relationship between children's motor proficiency and health-related fitness. J Paediatr Child Health. 2016;52(8):825–31.PubMedCrossRef
19.
go back to reference L’Abee C, Sauer PJ, Damen M, Rake JP, Cats H, Stolk RP. Cohort profile: the GECKO Drenthe study, overweight programming during early childhood. Int J Epidemiol. 2008;37(3):486–9.PubMedCrossRef L’Abee C, Sauer PJ, Damen M, Rake JP, Cats H, Stolk RP. Cohort profile: the GECKO Drenthe study, overweight programming during early childhood. Int J Epidemiol. 2008;37(3):486–9.PubMedCrossRef
20.
go back to reference National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.CrossRef National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.CrossRef
21.
go back to reference Brouwer SI, van Beijsterveldt TC, Bartels M, Hudziak JJ, Boomsma DI. Influences on achieving motor milestones: a twin-singleton study. Twin Res Hum Genet. 2006;9(3):424–30.PubMedCrossRef Brouwer SI, van Beijsterveldt TC, Bartels M, Hudziak JJ, Boomsma DI. Influences on achieving motor milestones: a twin-singleton study. Twin Res Hum Genet. 2006;9(3):424–30.PubMedCrossRef
22.
go back to reference WHO Multicentre Growth Reference Study Group. WHO motor development study: windows of achievement for six gross motor development milestones. Acta Paediatr Suppl. 2006;450:86–95. WHO Multicentre Growth Reference Study Group. WHO motor development study: windows of achievement for six gross motor development milestones. Acta Paediatr Suppl. 2006;450:86–95.
23.
go back to reference WHO Multicentre Growth Reference Study Group. Reliability of motor development data in the WHO multicentre growth reference study. Acta Paediatr Suppl. 2006;450:47–55. WHO Multicentre Growth Reference Study Group. Reliability of motor development data in the WHO multicentre growth reference study. Acta Paediatr Suppl. 2006;450:47–55.
24.
go back to reference Wijnhoven TM, de Onis M, Onyango AW, Wang T, Bjoerneboe GE, Bhandari N. Lartey a, al Rashidi B: assessment of gross motor development in the WHO multicentre growth reference study. Food Nutr Bull. 2004;25(1 Suppl):S37–45.PubMedCrossRef Wijnhoven TM, de Onis M, Onyango AW, Wang T, Bjoerneboe GE, Bhandari N. Lartey a, al Rashidi B: assessment of gross motor development in the WHO multicentre growth reference study. Food Nutr Bull. 2004;25(1 Suppl):S37–45.PubMedCrossRef
25.
go back to reference Langendonk JM, van Beijsterveldt CE, Brouwer SI, Stroet T, Hudziak JJ, Boomsma DI. Assessment of motor milestones in twins. Twin Res Hum Genet. 2007;10(6):835–9.PubMedCrossRef Langendonk JM, van Beijsterveldt CE, Brouwer SI, Stroet T, Hudziak JJ, Boomsma DI. Assessment of motor milestones in twins. Twin Res Hum Genet. 2007;10(6):835–9.PubMedCrossRef
26.
go back to reference Benjamin Neelon SE, Oken E, Taveras EM, Rifas-Shiman SL, Gillman MW. Age of achievement of gross motor milestones in infancy and adiposity at age 3 years. Matern Child Health J. 2012;16(5):1015–20.PubMedCrossRef Benjamin Neelon SE, Oken E, Taveras EM, Rifas-Shiman SL, Gillman MW. Age of achievement of gross motor milestones in infancy and adiposity at age 3 years. Matern Child Health J. 2012;16(5):1015–20.PubMedCrossRef
27.
go back to reference Ridgway CL, Ong KK, Tammelin TH, Sharp S, Ekelund U, Jarvelin MR. Infant motor development predicts sports participation at age 14 years: northern Finland birth cohort of 1966. PLoS One. 2009;4(8):e6837.PubMedPubMedCentralCrossRef Ridgway CL, Ong KK, Tammelin TH, Sharp S, Ekelund U, Jarvelin MR. Infant motor development predicts sports participation at age 14 years: northern Finland birth cohort of 1966. PLoS One. 2009;4(8):e6837.PubMedPubMedCentralCrossRef
28.
go back to reference Hanggi JM, Phillips LR, Rowlands AV. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2013;16(1):40–4.PubMedCrossRef Hanggi JM, Phillips LR, Rowlands AV. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2013;16(1):40–4.PubMedCrossRef
29.
go back to reference Choi L, Ward SC, Schnelle JF, Buchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44(10):2009–16.PubMedPubMedCentralCrossRef Choi L, Ward SC, Schnelle JF, Buchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44(10):2009–16.PubMedPubMedCentralCrossRef
30.
go back to reference Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46(6):1216–26.PubMedPubMedCentralCrossRef Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46(6):1216–26.PubMedPubMedCentralCrossRef
31.
go back to reference Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, Matheson D, Robinson TN. Effects of varying epoch lengths, Wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.PubMedPubMedCentralCrossRef Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, Matheson D, Robinson TN. Effects of varying epoch lengths, Wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.PubMedPubMedCentralCrossRef
32.
go back to reference Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40–5868.PubMedPubMedCentralCrossRef Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40–5868.PubMedPubMedCentralCrossRef
33.
go back to reference Kristensen PL, Moller NC, Korsholm L, Wedderkopp N, Andersen LB, Froberg K. Tracking of objectively measured physical activity from childhood to adolescence: the European youth heart study. Scand J Med Sci Sports. 2008;18(2):171–8.PubMedCrossRef Kristensen PL, Moller NC, Korsholm L, Wedderkopp N, Andersen LB, Froberg K. Tracking of objectively measured physical activity from childhood to adolescence: the European youth heart study. Scand J Med Sci Sports. 2008;18(2):171–8.PubMedCrossRef
34.
go back to reference Ling J, Robbins LB, Wen F, Peng W. Interventions to increase physical activity in children aged 2-5 years: a systematic review. Pediatr Exerc Sci. 2015;27(3):314–33.PubMedCrossRef Ling J, Robbins LB, Wen F, Peng W. Interventions to increase physical activity in children aged 2-5 years: a systematic review. Pediatr Exerc Sci. 2015;27(3):314–33.PubMedCrossRef
35.
go back to reference Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, Katzmarzyk PT, Pate RR, Connor Gorber S, Kho ME, Sampson M, Tremblay MS. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197–239.PubMedCrossRef Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, Katzmarzyk PT, Pate RR, Connor Gorber S, Kho ME, Sampson M, Tremblay MS. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197–239.PubMedCrossRef
36.
go back to reference Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, Saunders TJ, Katzmarzyk PT, Okely AD, Connor Gorber S, Kho ME, Sampson M, Lee H, Tremblay MS. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S240–65.PubMedCrossRef Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, Saunders TJ, Katzmarzyk PT, Okely AD, Connor Gorber S, Kho ME, Sampson M, Lee H, Tremblay MS. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S240–65.PubMedCrossRef
37.
go back to reference Hamadani JD, Tofail F, Cole T, Grantham-McGregor S. The relation between age of attainment of motor milestones and future cognitive and motor development in Bangladeshi children. Matern Child Nutr. 2013;9(Suppl 1):89–104.PubMedCrossRef Hamadani JD, Tofail F, Cole T, Grantham-McGregor S. The relation between age of attainment of motor milestones and future cognitive and motor development in Bangladeshi children. Matern Child Nutr. 2013;9(Suppl 1):89–104.PubMedCrossRef
38.
go back to reference Shibli R, Rubin L, Akons H, Shaoul R. Morbidity of overweight (>or=85th percentile) in the first 2 years of life. Pediatrics. 2008;122(2):267–72.PubMedCrossRef Shibli R, Rubin L, Akons H, Shaoul R. Morbidity of overweight (>or=85th percentile) in the first 2 years of life. Pediatrics. 2008;122(2):267–72.PubMedCrossRef
39.
go back to reference Slining M, Adair LS, Goldman BD, Borja JB, Bentley M. Infant overweight is associated with delayed motor development. J Pediatr. 2010;157(1):20–25.e1.PubMedPubMedCentralCrossRef Slining M, Adair LS, Goldman BD, Borja JB, Bentley M. Infant overweight is associated with delayed motor development. J Pediatr. 2010;157(1):20–25.e1.PubMedPubMedCentralCrossRef
40.
go back to reference Schmidt Morgen C, Andersen AM, Due P, Neelon SB, Gamborg M, Sorensen TI. Timing of motor milestones achievement and development of overweight in childhood: a study within the Danish National Birth Cohort. Pediatr Obes. 2014;9(4):239–48.PubMedCrossRef Schmidt Morgen C, Andersen AM, Due P, Neelon SB, Gamborg M, Sorensen TI. Timing of motor milestones achievement and development of overweight in childhood: a study within the Danish National Birth Cohort. Pediatr Obes. 2014;9(4):239–48.PubMedCrossRef
41.
go back to reference de Vries AG, Huiting HG, van den Heuvel ER, L’Abee C, Corpeleijn E, Stolk RP. An activity stimulation programme during a child's first year reduces some indicators of adiposity at the age of two-and-a-half. Acta Paediatr. 2015;104(4):414–21.PubMedCrossRef de Vries AG, Huiting HG, van den Heuvel ER, L’Abee C, Corpeleijn E, Stolk RP. An activity stimulation programme during a child's first year reduces some indicators of adiposity at the age of two-and-a-half. Acta Paediatr. 2015;104(4):414–21.PubMedCrossRef
42.
go back to reference Brouwer SI, Küpers LK, Kors L, Sijtsma A, Sauer PJJ, Renders CM, Corpeleijn E. Parental physical activity is associated with objectively measured physical activity in young children in a sex-specific manner: the GECKO Drenthe cohort. BMC Public Health. 2018;18(1):1033.PubMedPubMedCentralCrossRef Brouwer SI, Küpers LK, Kors L, Sijtsma A, Sauer PJJ, Renders CM, Corpeleijn E. Parental physical activity is associated with objectively measured physical activity in young children in a sex-specific manner: the GECKO Drenthe cohort. BMC Public Health. 2018;18(1):1033.PubMedPubMedCentralCrossRef
Metadata
Title
Later achievement of infant motor milestones is related to lower levels of physical activity during childhood: the GECKO Drenthe cohort
Authors
Silvia I. Brouwer
Ronald P. Stolk
Eva Corpeleijn
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1784-0

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue