Skip to main content
Top
Published in: General Thoracic and Cardiovascular Surgery 5/2023

10-12-2022 | Original Article

Number of dye marks required in virtual-assisted lung mapping

Authors: Masaaki Nagano, Masaaki Sato, Masahiro Yanagiya, Keita Nakao, Chihiro Konoeda, Kentaro Kitano, Jun Nakajima

Published in: General Thoracic and Cardiovascular Surgery | Issue 5/2023

Login to get access

Abstract

Objectives

Virtual-assisted lung mapping is a preoperative bronchoscopic multi-spot dye-marking technique used in sublobar lung resection for hardly palpable lung nodules. However, the number of marks required per nodule remains unknown. Therefore, we examined the correlation between the number of intraoperative visible marks and the successful resection rate.

Methods

We retrospectively examined 210 consecutive patients with 256 lesions who underwent virtual-assisted lung mapping during January 2014–December 2020 at our hospital. When a nodule was not resected at the initial attempt, or when a nodule was very close to the cut margin in the resected specimen and required additional resection, we categorized it as unsuccessful resection. We divided 256 lesions into successful and unsuccessful groups and compared the numbers of intraoperative visible marks between the two groups.

Results

Of 797 attempted marks, 738 (92.4%) were visible during the surgery. Fourteen (5.4%) of 256 lesions were determined to be unsuccessful according to the study criteria. There was a remarkable difference in the average numbers of intraoperative visible marks between both groups (3 [interquartile range: 2–4] vs. 2 [interquartile range: 1–2.8]; p < 0.01). Multivariable logistic analysis revealed a significant difference in the number of intraoperative visible marks (odds ratio: 0.28, 95% confidence interval: 0.14–0.57; p < 0.001) between both groups.

Conclusions

Successful sublobar lung resection requires three or more intraoperative visible marks established using virtual-assisted lung mapping per lung nodule.
Literature
1.
go back to reference National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395–409. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395–409.
2.
go back to reference Bendixen M, Jorgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol. 2016;17:836–44.CrossRefPubMed Bendixen M, Jorgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol. 2016;17:836–44.CrossRefPubMed
3.
go back to reference Yang HX, Woo KM, Sima CS, Bains MS, Adusumilli PS, Huang J, et al. Long-term survival based on the surgical approach to lobectomy for clinical stage I nonsmall cell lung cancer: comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy. Ann Surg. 2017;265:431–7.CrossRefPubMed Yang HX, Woo KM, Sima CS, Bains MS, Adusumilli PS, Huang J, et al. Long-term survival based on the surgical approach to lobectomy for clinical stage I nonsmall cell lung cancer: comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy. Ann Surg. 2017;265:431–7.CrossRefPubMed
4.
go back to reference Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 2022;399:1607–17.CrossRefPubMed Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet. 2022;399:1607–17.CrossRefPubMed
5.
go back to reference Blasberg JD, Pass HI, Donington JS. Sublobar resection: a movement from the lung cancer Study Group. J Thorac Oncol. 2010;5:1583–93.CrossRefPubMed Blasberg JD, Pass HI, Donington JS. Sublobar resection: a movement from the lung cancer Study Group. J Thorac Oncol. 2010;5:1583–93.CrossRefPubMed
6.
go back to reference Sato M, Omasa M, Chen F, Sato T, Sonobe M, Bando T, et al. Use of virtual assisted lung mapping (VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J Thorac Cardiovasc Surg. 2014;147:1813–9.CrossRefPubMed Sato M, Omasa M, Chen F, Sato T, Sonobe M, Bando T, et al. Use of virtual assisted lung mapping (VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J Thorac Cardiovasc Surg. 2014;147:1813–9.CrossRefPubMed
7.
go back to reference Ichinose J, Kohno T, Fujimori S, Harano T, Suzuki S. Efficacy and complications of computed tomography-guided hook wire localization. Ann Thorac Surg. 2013;96:1203–8.CrossRefPubMed Ichinose J, Kohno T, Fujimori S, Harano T, Suzuki S. Efficacy and complications of computed tomography-guided hook wire localization. Ann Thorac Surg. 2013;96:1203–8.CrossRefPubMed
8.
go back to reference Yanagiya M, Sato M, Ueda K, Nagayama K, Kawahara T, Kawashima S, et al. Preoperative lung surface localization for pulmonary wedge resection: a single-center experience. J Thorac Dis. 2020;12:2129–36.CrossRefPubMedPubMedCentral Yanagiya M, Sato M, Ueda K, Nagayama K, Kawahara T, Kawashima S, et al. Preoperative lung surface localization for pulmonary wedge resection: a single-center experience. J Thorac Dis. 2020;12:2129–36.CrossRefPubMedPubMedCentral
9.
go back to reference Sato M, Kuwata T, Yamanashi K, Kitamura A, Misawa K, Imashimizu K, et al. Safety and reproducibility of virtual-assisted lung mapping: a multicentre study in Japan. Eur J Cardiothorac Surg. 2017;51:861–8.PubMed Sato M, Kuwata T, Yamanashi K, Kitamura A, Misawa K, Imashimizu K, et al. Safety and reproducibility of virtual-assisted lung mapping: a multicentre study in Japan. Eur J Cardiothorac Surg. 2017;51:861–8.PubMed
10.
go back to reference Sato M, Kobayashi M, Kojima F, Tanaka F, Yanagiya M, Kosaka S, et al. Effect of virtual-assisted lung mapping in acquisition of surgical margins in sublobar lung resection. J Thorac Cardiovasc Surg. 2018;156(1691–701): e5. Sato M, Kobayashi M, Kojima F, Tanaka F, Yanagiya M, Kosaka S, et al. Effect of virtual-assisted lung mapping in acquisition of surgical margins in sublobar lung resection. J Thorac Cardiovasc Surg. 2018;156(1691–701): e5.
11.
go back to reference Yamanashi K, Sato M, Marumo S, Fukui T, Sumitomo R, Shoji T, et al. Emphysematous lungs do not affect visibility of virtual-assisted lung mapping. Asian Cardiovasc Thorac Ann. 2016;24:152–7.CrossRefPubMed Yamanashi K, Sato M, Marumo S, Fukui T, Sumitomo R, Shoji T, et al. Emphysematous lungs do not affect visibility of virtual-assisted lung mapping. Asian Cardiovasc Thorac Ann. 2016;24:152–7.CrossRefPubMed
12.
go back to reference Sato M, Shinohara Y, Yanagiya M, Karasaki T, Kitano K, Nagayama K, et al. Use of electromagnetic navigation bronchoscopy in virtual-assisted lung mapping: the effect of on-site adjustment. Gen Thorac Cardiovasc Surg. 2019;67:1062–9.CrossRefPubMed Sato M, Shinohara Y, Yanagiya M, Karasaki T, Kitano K, Nagayama K, et al. Use of electromagnetic navigation bronchoscopy in virtual-assisted lung mapping: the effect of on-site adjustment. Gen Thorac Cardiovasc Surg. 2019;67:1062–9.CrossRefPubMed
13.
go back to reference Sato M, Yamada T, Menju T, Aoyama A, Sato T, Chen F, et al. Virtual-assisted lung mapping: outcome of 100 consecutive cases in a single institute. Eur J Cardiothorac Surg. 2015;47:e131–9.CrossRefPubMed Sato M, Yamada T, Menju T, Aoyama A, Sato T, Chen F, et al. Virtual-assisted lung mapping: outcome of 100 consecutive cases in a single institute. Eur J Cardiothorac Surg. 2015;47:e131–9.CrossRefPubMed
14.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed
15.
go back to reference Sato M, Aoyama A, Yamada T, Menjyu T, Chen F, Sato T, et al. Thoracoscopic wedge lung resection using virtual-assisted lung mapping. Asian Cardiovasc Thorac Ann. 2015;23:46–54.CrossRefPubMed Sato M, Aoyama A, Yamada T, Menjyu T, Chen F, Sato T, et al. Thoracoscopic wedge lung resection using virtual-assisted lung mapping. Asian Cardiovasc Thorac Ann. 2015;23:46–54.CrossRefPubMed
16.
go back to reference Yoshiyasu N, Sato M, Yamaguchi H, Nakajima J. Risk factors for invisible intraoperative markings after virtual-assisted lung mapping. Ann Thorac Surg. 2021;114:1903.CrossRefPubMed Yoshiyasu N, Sato M, Yamaguchi H, Nakajima J. Risk factors for invisible intraoperative markings after virtual-assisted lung mapping. Ann Thorac Surg. 2021;114:1903.CrossRefPubMed
17.
go back to reference Yanagiya M, Sato M, Ijiri N, Kobayashi K, Nagano M, Konoeda C, et al. Virtual-assisted lung mapping using dual staining with indocyanine green and indigo carmine enhanced marking detectability. J Thorac Dis. 2022;14:1061–9.CrossRefPubMedPubMedCentral Yanagiya M, Sato M, Ijiri N, Kobayashi K, Nagano M, Konoeda C, et al. Virtual-assisted lung mapping using dual staining with indocyanine green and indigo carmine enhanced marking detectability. J Thorac Dis. 2022;14:1061–9.CrossRefPubMedPubMedCentral
18.
go back to reference Sato M, Kobayashi M, Sakamoto J, Fukai R, Takizawa H, Shinohara S, et al. The role of virtual-assisted lung mapping 2.0 combining microcoils and dye marks in deep lung resection. J Thorac Cardiovasc Surg. 2022;164:243-51e5.CrossRefPubMed Sato M, Kobayashi M, Sakamoto J, Fukai R, Takizawa H, Shinohara S, et al. The role of virtual-assisted lung mapping 2.0 combining microcoils and dye marks in deep lung resection. J Thorac Cardiovasc Surg. 2022;164:243-51e5.CrossRefPubMed
19.
go back to reference Yamaguchi H, Sato M, Yamamoto K, Ueda K, Date H, Chen-Yoshikawa T, et al. Virtual-assisted lung mapping in sublobar resection of small pulmonary nodules, long-term results. Eur J Cardiothorac Surg. 2022;61:761–8.CrossRefPubMed Yamaguchi H, Sato M, Yamamoto K, Ueda K, Date H, Chen-Yoshikawa T, et al. Virtual-assisted lung mapping in sublobar resection of small pulmonary nodules, long-term results. Eur J Cardiothorac Surg. 2022;61:761–8.CrossRefPubMed
Metadata
Title
Number of dye marks required in virtual-assisted lung mapping
Authors
Masaaki Nagano
Masaaki Sato
Masahiro Yanagiya
Keita Nakao
Chihiro Konoeda
Kentaro Kitano
Jun Nakajima
Publication date
10-12-2022
Publisher
Springer Nature Singapore
Published in
General Thoracic and Cardiovascular Surgery / Issue 5/2023
Print ISSN: 1863-6705
Electronic ISSN: 1863-6713
DOI
https://doi.org/10.1007/s11748-022-01896-2

Other articles of this Issue 5/2023

General Thoracic and Cardiovascular Surgery 5/2023 Go to the issue