Skip to main content
Top
Published in: Cancer Cell International 1/2014

Open Access 01-12-2014 | Primary research

Nucleofection optimization and in vitro anti-tumourigenic effect of TRAIL-expressing human adipose-derived mesenchymal stromal cells

Authors: Kamal Shaik Fakiruddin, Puteri Baharuddin, Moon Nian Lim, Noor Atiqah Fakharuzi, Nurul Ain Nasim M Yusof, Zubaidah Zakaria

Published in: Cancer Cell International | Issue 1/2014

Login to get access

Abstract

Background

Tumour homing capacity of engineered human adipose-derived mesenchymal stromal cells (ADMSCs) expressing anti-tumour agents might be the key for a much safer and yet efficient targeted tumour therapy. However, ADMSCs exhibit resistant to most gene transfection techniques and the use of highly efficient viral vectors has several disadvantages primarily concerning safety risk. Here, we optimized the use of highly efficient and safe nucleofection-based transfection using plasmid encoded for TNF-Related Apoptosis Inducing Ligand (TRAIL) into ADMSCs and investigated the potential anti-tumourigenic of TRAIL-expressing ADMSCs (ADMSCs-TRAIL) on selected cancer models in vitro.

Methods

Different concentration of TRAIL-encoded plasmid and ADMSCs were nucleofected and the percentage of fluorescence cells were analyzed to determine the optimal condition. TRAIL protein and mRNA were validated in nucloeofected ADMSCs using ELISA and RT-PCR respectively. Evaluation of TRAIL specific death receptors were performed on both tumours (A549/lung tumour, LN18/glioblastoma and HepG2/hepatocellular carcinoma) and haematological malignant lines (REH/acute lymphocytic leukaemia, K562/chronic myelogenous leukaemia and KMS-28BM/multiple myeloma) using flow cytometry. ADMSCs-TRAIL was subsequently assessed for anti-tumourigenic properties using both proliferation assay (MTS assay) and apoptosis assay (Annexin-V / Propidium Iodide staining).

Results

Nucleofection showed increased total plasmid concentration (2 μg to 8 μg) resulted in significantly higher reporter expression (11.33% to 39.7%) with slight reduction on cells viability (~10%). ADMSCs-TRAIL significantly inhibited ~50% of cell proliferation in LN18, signifying sensitivity of the cell to ADMSCs-TRAIL mediated inhibition. Inhibition of both tumour and malignant lines proliferation by ADMSCs-TRAIL conditioned medium noticed in HepG2, A549 and REH respectively, whereas K562 and KMS-28BM malignant lines exhibit resistant to ADMSCs-TRAIL mediated inhibition. Moreover, we found that native ADMSCs alone were capable of inducing apoptosis in both LN18 and HepG2 tumour lines, despite substantial increased on the percentage of apoptosis by ADMSCs-TRAIL.

Conclusion

ADMSCs-TRAIL selectively inhibit cancer model and markedly induces apoptosis. Through investigation of the specific TRAIL death receptors expression, we saw that the receptors expression did influence the sensitivity of some but not all cancer lines to TRAIL-mediated inhibition. This study provides further insight into the anti-tumourigenic potential of ADMSCs-TRAIL on different cancer models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004, 36 (4): 568-584. 10.1016/j.biocel.2003.11.001.CrossRefPubMed Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004, 36 (4): 568-584. 10.1016/j.biocel.2003.11.001.CrossRefPubMed
2.
go back to reference Aurich H, Sgodda M, Kaltwaßer P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B: Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009, 58 (4): 570-581. 10.1136/gut.2008.154880.CrossRefPubMed Aurich H, Sgodda M, Kaltwaßer P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B: Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009, 58 (4): 570-581. 10.1136/gut.2008.154880.CrossRefPubMed
3.
go back to reference Seo MJ, Suh SY, Bae YC, Jung JS: Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005, 328 (1): 258-264. 10.1016/j.bbrc.2004.12.158.CrossRefPubMed Seo MJ, Suh SY, Bae YC, Jung JS: Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005, 328 (1): 258-264. 10.1016/j.bbrc.2004.12.158.CrossRefPubMed
4.
go back to reference Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T: Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007, 46 (1): 219-228. 10.1002/hep.21704.CrossRefPubMed Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T: Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007, 46 (1): 219-228. 10.1002/hep.21704.CrossRefPubMed
5.
go back to reference Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B: Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol. 2013, 129: 89-115.PubMed Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B: Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol. 2013, 129: 89-115.PubMed
6.
go back to reference Safford KM, Hicok KC, Safford SD, Halvorsen Y-DC, Wilkison WO, Gimble JM, Rice HE: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002, 294 (2): 371-379. 10.1016/S0006-291X(02)00469-2.CrossRefPubMed Safford KM, Hicok KC, Safford SD, Halvorsen Y-DC, Wilkison WO, Gimble JM, Rice HE: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002, 294 (2): 371-379. 10.1016/S0006-291X(02)00469-2.CrossRefPubMed
7.
go back to reference Gao S, Zhao P, Lin C, Sun Y, Wang Y, Zhou Z, Yang D, Wang X, Xu H, Zhou F, Cao L, Zhou W, Ning K, Chen X, Xu J: Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng A. 2014, 20 (7–8): 1271-1284. 10.1089/ten.tea.2012.0773.CrossRef Gao S, Zhao P, Lin C, Sun Y, Wang Y, Zhou Z, Yang D, Wang X, Xu H, Zhou F, Cao L, Zhou W, Ning K, Chen X, Xu J: Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng A. 2014, 20 (7–8): 1271-1284. 10.1089/ten.tea.2012.0773.CrossRef
8.
go back to reference Li J, Zhu L, Qu X, Li J, Lin R, Liao L, Wang J, Wang S, Xu Q, Zhao RC: Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pancreatic development in vivo. Stem Cells Dev. 2013, 22 (10): 1576-1587. 10.1089/scd.2012.0148.CrossRefPubMed Li J, Zhu L, Qu X, Li J, Lin R, Liao L, Wang J, Wang S, Xu Q, Zhao RC: Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pancreatic development in vivo. Stem Cells Dev. 2013, 22 (10): 1576-1587. 10.1089/scd.2012.0148.CrossRefPubMed
9.
go back to reference Bhonde RR, Sheshadri P, Sharma S, Kumar A: Making surrogate beta-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol. 2014, 46: 90-102. 10.1016/j.biocel.2013.11.006.CrossRefPubMed Bhonde RR, Sheshadri P, Sharma S, Kumar A: Making surrogate beta-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol. 2014, 46: 90-102. 10.1016/j.biocel.2013.11.006.CrossRefPubMed
10.
go back to reference Dave SD, Vanikar AV, Trivedi HL: In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1. Cytotechnology. 2014, 66 (2): 299-307. 10.1007/s10616-013-9573-3.CrossRefPubMedCentralPubMed Dave SD, Vanikar AV, Trivedi HL: In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1. Cytotechnology. 2014, 66 (2): 299-307. 10.1007/s10616-013-9573-3.CrossRefPubMedCentralPubMed
11.
go back to reference D'Souza N, Burns JS, Grisendi G, Candini O, Veronesi E, Piccinno S, Horwitz EM, Paolucci P, Conte P, Dominici M: MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Adv Biochem Eng/Biotechno 2012. D'Souza N, Burns JS, Grisendi G, Candini O, Veronesi E, Piccinno S, Horwitz EM, Paolucci P, Conte P, Dominici M: MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Adv Biochem Eng/Biotechno 2012.
12.
go back to reference Stagg J: Mesenchymal stem cells in cancer. Stem Cell Rev. 2008, 4 (2): 119-124. 10.1007/s12015-008-9030-4.CrossRefPubMed Stagg J: Mesenchymal stem cells in cancer. Stem Cell Rev. 2008, 4 (2): 119-124. 10.1007/s12015-008-9030-4.CrossRefPubMed
13.
go back to reference Sun XY, Nong J, Qin K, Warnock GL, Dai LJ: Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine. World J Stem Cells. 2011, 3 (11): 96-103. 10.4252/wjsc.v3.i11.96.CrossRefPubMedCentralPubMed Sun XY, Nong J, Qin K, Warnock GL, Dai LJ: Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine. World J Stem Cells. 2011, 3 (11): 96-103. 10.4252/wjsc.v3.i11.96.CrossRefPubMedCentralPubMed
14.
go back to reference Shahrokhi S, Daneshmandi S, Menaa F: Tumor necrosis factor-alpha/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice. Hum Gene Ther. 2014, 25 (3): 240-253. 10.1089/hum.2013.193.CrossRefPubMedCentralPubMed Shahrokhi S, Daneshmandi S, Menaa F: Tumor necrosis factor-alpha/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice. Hum Gene Ther. 2014, 25 (3): 240-253. 10.1089/hum.2013.193.CrossRefPubMedCentralPubMed
15.
go back to reference Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA: Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress.Cell stress & chaperones 2014., Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA: Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress.Cell stress & chaperones 2014.,
16.
go back to reference Hajizadeh-Sikaroodi S, Hosseini A, Fallah A, Estiri H, Noormohammadi Z, Salehi M, Ghaderian SM, Akhavan Niyaki H, Soleimani M, Kazemi B: Lentiviral Mediating Genetic Engineered Mesenchymal Stem Cell for Releasing IL-27 as a Gene Therapy Approach for Autoimmune Diseases.Cell journal 2013, 16(3)., Hajizadeh-Sikaroodi S, Hosseini A, Fallah A, Estiri H, Noormohammadi Z, Salehi M, Ghaderian SM, Akhavan Niyaki H, Soleimani M, Kazemi B: Lentiviral Mediating Genetic Engineered Mesenchymal Stem Cell for Releasing IL-27 as a Gene Therapy Approach for Autoimmune Diseases.Cell journal 2013, 16(3).,
17.
go back to reference Wang ZH, Li XL, He XJ, Wu BJ, Xu M, Chang HM, Zhang XH, Xing Z, Jing XH, Kong DM, Kou XH, Yang YY: Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al.]. 2014, 47 (4): 279-286. Wang ZH, Li XL, He XJ, Wu BJ, Xu M, Chang HM, Zhang XH, Xing Z, Jing XH, Kong DM, Kou XH, Yang YY: Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al.]. 2014, 47 (4): 279-286.
18.
go back to reference Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K: Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009, 106 (12): 4822-4827. 10.1073/pnas.0806647106.CrossRefPubMedCentralPubMed Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K: Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009, 106 (12): 4822-4827. 10.1073/pnas.0806647106.CrossRefPubMedCentralPubMed
19.
go back to reference Thomas CE, Ehrhardt A, Kay MA: Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003, 4 (5): 346-358. 10.1038/nrg1066.CrossRefPubMed Thomas CE, Ehrhardt A, Kay MA: Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003, 4 (5): 346-358. 10.1038/nrg1066.CrossRefPubMed
20.
go back to reference Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Körner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Müller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K: New non-viral method for gene transfer into primary cells. Methods. 2004, 33 (2): 151-163. 10.1016/j.ymeth.2003.11.009.CrossRefPubMed Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Körner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Müller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K: New non-viral method for gene transfer into primary cells. Methods. 2004, 33 (2): 151-163. 10.1016/j.ymeth.2003.11.009.CrossRefPubMed
21.
go back to reference Zaragosi L-E, Billon N, Ailhaud G, Dani C: Nucleofection Is a Valuable Transfection Method for Transient and Stable Transgene Expression in Adipose Tissue-Derived Stem Cells. Stem Cells. 2007, 25 (3): 790-797. 10.1634/stemcells.2006-0235.CrossRefPubMed Zaragosi L-E, Billon N, Ailhaud G, Dani C: Nucleofection Is a Valuable Transfection Method for Transient and Stable Transgene Expression in Adipose Tissue-Derived Stem Cells. Stem Cells. 2007, 25 (3): 790-797. 10.1634/stemcells.2006-0235.CrossRefPubMed
22.
go back to reference Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C, Colombo MP, Versura P, D'Errico-Grigioni A, Ferri E, Baccarani M, Lemoli RM: Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells. 2006, 24 (2): 454-461. 10.1634/stemcells.2005-0198.CrossRefPubMed Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C, Colombo MP, Versura P, D'Errico-Grigioni A, Ferri E, Baccarani M, Lemoli RM: Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells. 2006, 24 (2): 454-461. 10.1634/stemcells.2005-0198.CrossRefPubMed
23.
go back to reference Distler JHW, Jüngel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, Distler O: Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Exp Dermatol. 2005, 14 (4): 315-320. 10.1111/j.0906-6705.2005.00276.x.CrossRefPubMed Distler JHW, Jüngel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, Distler O: Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Exp Dermatol. 2005, 14 (4): 315-320. 10.1111/j.0906-6705.2005.00276.x.CrossRefPubMed
24.
go back to reference Almasan A, Ashkenazi A: Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 2003, 14 (3–4): 337-348. 10.1016/S1359-6101(03)00029-7.CrossRefPubMed Almasan A, Ashkenazi A: Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 2003, 14 (3–4): 337-348. 10.1016/S1359-6101(03)00029-7.CrossRefPubMed
25.
go back to reference Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C: TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials. 2009, 4 (1): 34-41. 10.2174/157488709787047530.CrossRefPubMed Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C: TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials. 2009, 4 (1): 34-41. 10.2174/157488709787047530.CrossRefPubMed
26.
go back to reference Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H: Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004, 11 (14): 1155-1164. 10.1038/sj.gt.3302276.CrossRefPubMed Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H: Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004, 11 (14): 1155-1164. 10.1038/sj.gt.3302276.CrossRefPubMed
27.
go back to reference Mahon MJ: Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity. BioTechniques. 2011, 51 (2): 119-126.PubMedCentralPubMed Mahon MJ: Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity. BioTechniques. 2011, 51 (2): 119-126.PubMedCentralPubMed
28.
go back to reference Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A: Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997, 277 (5327): 818-821. 10.1126/science.277.5327.818.CrossRefPubMed Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A: Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997, 277 (5327): 818-821. 10.1126/science.277.5327.818.CrossRefPubMed
29.
go back to reference Hao XS, Hao JH, Liu FT, Newland AC, Jia L: Potential mechanisms of leukemia cell resistance to TRAIL-induced apopotosis. Apoptosis: Int J Programmed Cell Death. 2003, 8 (6): 601-607. 10.1023/A:1026131425204.CrossRef Hao XS, Hao JH, Liu FT, Newland AC, Jia L: Potential mechanisms of leukemia cell resistance to TRAIL-induced apopotosis. Apoptosis: Int J Programmed Cell Death. 2003, 8 (6): 601-607. 10.1023/A:1026131425204.CrossRef
30.
go back to reference Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F: Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth?. Stem Cells. 2011, 29 (1): 11-19. 10.1002/stem.559.CrossRefPubMedCentralPubMed Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F: Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth?. Stem Cells. 2011, 29 (1): 11-19. 10.1002/stem.559.CrossRefPubMedCentralPubMed
31.
go back to reference Tabe Y, Jin L, Mills GB, Tsutsumi-Ishii Y, Andreeff M, Konopleva M: Mesenchymal Stem Cells Promote Survival of Leukemic Cells Via Integrin-Linked Kinase (ILK)-Dependent Akt and STAT3 Activation: Implications for Leukemia Therapy. ASH Ann Meet Abstr. 2004, 104 (11): 3377- Tabe Y, Jin L, Mills GB, Tsutsumi-Ishii Y, Andreeff M, Konopleva M: Mesenchymal Stem Cells Promote Survival of Leukemic Cells Via Integrin-Linked Kinase (ILK)-Dependent Akt and STAT3 Activation: Implications for Leukemia Therapy. ASH Ann Meet Abstr. 2004, 104 (11): 3377-
32.
go back to reference Rodríguez-Pardo VM, Aristizabal JA, Jaimes D, Quijano SM, de los Reyes I, Herrera MV, Solano J, Vernot JP: Mesenchymal stem cells promote leukaemic cells aberrant phenotype from B-cell acute lymphoblastic leukaemia. Hematol/Oncol Stem Cell Ther. 2013, 6 (3–4): 89-100. 10.1016/j.hemonc.2013.09.002.CrossRef Rodríguez-Pardo VM, Aristizabal JA, Jaimes D, Quijano SM, de los Reyes I, Herrera MV, Solano J, Vernot JP: Mesenchymal stem cells promote leukaemic cells aberrant phenotype from B-cell acute lymphoblastic leukaemia. Hematol/Oncol Stem Cell Ther. 2013, 6 (3–4): 89-100. 10.1016/j.hemonc.2013.09.002.CrossRef
33.
go back to reference Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL: Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett. 2011, 305 (1): 8-20. 10.1016/j.canlet.2011.02.012.CrossRefPubMed Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL: Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett. 2011, 305 (1): 8-20. 10.1016/j.canlet.2011.02.012.CrossRefPubMed
34.
go back to reference He S-Q, Rehman H, Gong M-G, Zhao Y-Z, Huang Z-Y, Li C-H, Zhang W-G, Chen X-P: Inhibiting survivin expression enhances TRAIL-induced tumoricidal activity in human hepatocellular carcinoma via cell cycle arrest. Cancer Biol Therapy. 2007, 6 (8): 1258-1268. 10.4161/cbt.6.8.4444.CrossRef He S-Q, Rehman H, Gong M-G, Zhao Y-Z, Huang Z-Y, Li C-H, Zhang W-G, Chen X-P: Inhibiting survivin expression enhances TRAIL-induced tumoricidal activity in human hepatocellular carcinoma via cell cycle arrest. Cancer Biol Therapy. 2007, 6 (8): 1258-1268. 10.4161/cbt.6.8.4444.CrossRef
35.
go back to reference Luan Z, He Y, He F, Chen Z: Rocaglamide overcomes tumor necrosis factorrelated apoptosisinducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase8 through cellular FLICElikeinhibitory protein downregulation. Molecular medicine reports 2014. Luan Z, He Y, He F, Chen Z: Rocaglamide overcomes tumor necrosis factorrelated apoptosisinducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase8 through cellular FLICElikeinhibitory protein downregulation. Molecular medicine reports 2014.
36.
go back to reference Kim EY, Yu JS, Yang M, Kim AK: Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5. Mole Cells. 2013, 35 (1): 32-40. 10.1007/s10059-013-2175-2.CrossRef Kim EY, Yu JS, Yang M, Kim AK: Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5. Mole Cells. 2013, 35 (1): 32-40. 10.1007/s10059-013-2175-2.CrossRef
37.
go back to reference Hecht E, Zago M, Sarill M, Rico de Souza A, Gomez A, Matthews J, Hamid Q, Eidelman DH, Baglole CJ: Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation.Toxicol Appl Pharmacol 2014., Hecht E, Zago M, Sarill M, Rico de Souza A, Gomez A, Matthews J, Hamid Q, Eidelman DH, Baglole CJ: Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation.Toxicol Appl Pharmacol 2014.,
38.
go back to reference Martin KR, Wooden A: Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation, in MCF-7 human breast cancer cells. J Med Food. 2012, 15 (11): 945-954. 10.1089/jmf.2011.0336.CrossRefPubMed Martin KR, Wooden A: Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation, in MCF-7 human breast cancer cells. J Med Food. 2012, 15 (11): 945-954. 10.1089/jmf.2011.0336.CrossRefPubMed
Metadata
Title
Nucleofection optimization and in vitro anti-tumourigenic effect of TRAIL-expressing human adipose-derived mesenchymal stromal cells
Authors
Kamal Shaik Fakiruddin
Puteri Baharuddin
Moon Nian Lim
Noor Atiqah Fakharuzi
Nurul Ain Nasim M Yusof
Zubaidah Zakaria
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2014
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-014-0122-8

Other articles of this Issue 1/2014

Cancer Cell International 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine