Skip to main content
Top
Published in: Cancer Cell International 1/2014

Open Access 01-12-2014 | Primary research

Enhanced breast cancer therapy with nsPEFs and low concentrations of gemcitabine

Authors: Shan Wu, Jinsong Guo, Wendong Wei, Jue Zhang, Jing Fang, Stephen J Beebe

Published in: Cancer Cell International | Issue 1/2014

Login to get access

Abstract

Background

Chemotherapy either before or after surgery is a common breast cancer treatment. Long-term, high dose treatments with chemotherapeutic drugs often result in undesirable side effects, frequent recurrences and resistances to therapy.

Methods

The anti-cancer drug, gemcitabine (GEM) was used in combination with pulse power technology with nanosecond pulsed electric fields (nsPEFs) for treatment of human breast cancer cells in vitro. Two strategies include sensitizing mammary tumor cells with GEM before nsPEF treatment or sensitizing cells with nsPEFs before GEM treatment. Breast cancer cell lines MCF-7 and MDA-MB-231 were treated with 250 65 ns-duration pulses and electric fields of 15, 20 or 25 kV/cm before or after treatment with 0.38 µM GEM.

Results

Both cell lines exhibited robust synergism for loss of cell viability 24 h and 48 h after treatment; treatment with GEM before nsPEFs was the preferred order. In clonogenic assays, only MDA-MB-231 cells showed synergism; again GEM before nsPEFs was the preferred order. In apoptosis/necrosis assays with Annexin-V-FITC/propidium iodide 2 h after treatment, both cell lines exhibited apoptosis as a major cell death mechanism, but only MDA-MB-231 cells exhibited modest synergism. However, unlike viability assays, nsPEF treatment before GEM was preferred. MDA-MB-231 cells exhibited much greater levels of necrosis then in MCF-7 cells, which were very low. Synergy was robust and greater when nsPEF treatment was before GEM.

Conclusions

Combination treatments with low GEM concentrations and modest nsPEFs provide enhanced cytotoxicity in two breast cancer cell lines. The treatment order is flexible, although long-term survival and short-term cell death analyses indicated different treatment order preferences. Based on synergism, apoptosis mechanisms for both agents were more similar in MCF-7 than in MDA-MB-231 cells. In contrast, necrosis mechanisms for the two agents were distinctly different in MDA-MB-231, but too low to reliably evaluate in MCF-7 cells. While disease mechanisms in the two cell lines are different based on the differential synergistic response to treatments, combination treatment with GEM and nsPEFs should provide an advantageous therapy for breast cancer ablation in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed
2.
go back to reference Pearlman AW: Breast cancer-influence of growth rate on prognosis and treatment evaluation: a study based on mastectomy scar recurrences. Cancer. 1976, 38: 1826-1833. 10.1002/1097-0142(197610)38:4<1826::AID-CNCR2820380460>3.0.CO;2-L.CrossRefPubMed Pearlman AW: Breast cancer-influence of growth rate on prognosis and treatment evaluation: a study based on mastectomy scar recurrences. Cancer. 1976, 38: 1826-1833. 10.1002/1097-0142(197610)38:4<1826::AID-CNCR2820380460>3.0.CO;2-L.CrossRefPubMed
3.
go back to reference Peer PG, van Dijck JA, Hendriks JH, Holland R, Verbeek AL: Age-dependent growth rate of primary breast cancer. Cancer. 1993, 71: 3547-3551. 10.1002/1097-0142(19930601)71:11<3547::AID-CNCR2820711114>3.0.CO;2-C.CrossRefPubMed Peer PG, van Dijck JA, Hendriks JH, Holland R, Verbeek AL: Age-dependent growth rate of primary breast cancer. Cancer. 1993, 71: 3547-3551. 10.1002/1097-0142(19930601)71:11<3547::AID-CNCR2820711114>3.0.CO;2-C.CrossRefPubMed
4.
go back to reference Tilanus-Linthorst MM, Obdeijn IM, Hop WC, Causer PA, Leach MO, Warner E, Pointon L, Hill K, Klijn JG, Warren RM, Gilbert FJ: BRCA1 mutation and young age predict fast breast cancer growth in the Dutch, United Kingdom, and Canadian magnetic resonance imaging screening trials. Clin Cancer Res. 2007, 13: 7357-7362. 10.1158/1078-0432.CCR-07-0689.CrossRefPubMed Tilanus-Linthorst MM, Obdeijn IM, Hop WC, Causer PA, Leach MO, Warner E, Pointon L, Hill K, Klijn JG, Warren RM, Gilbert FJ: BRCA1 mutation and young age predict fast breast cancer growth in the Dutch, United Kingdom, and Canadian magnetic resonance imaging screening trials. Clin Cancer Res. 2007, 13: 7357-7362. 10.1158/1078-0432.CCR-07-0689.CrossRefPubMed
5.
go back to reference Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008, 10: R41-10.1186/bcr2092.CrossRefPubMedCentralPubMed Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008, 10: R41-10.1186/bcr2092.CrossRefPubMedCentralPubMed
6.
go back to reference Brinton LA, Sherman ME, Carreon JD, Anderson WF: Recent trends in breast cancer among younger women in the United States. J Natl Cancer Ins. 2008, 100: 1643-1648. 10.1093/jnci/djn344.CrossRef Brinton LA, Sherman ME, Carreon JD, Anderson WF: Recent trends in breast cancer among younger women in the United States. J Natl Cancer Ins. 2008, 100: 1643-1648. 10.1093/jnci/djn344.CrossRef
7.
go back to reference Virnig BA, Tuttle TM, Shamliyan T, Kane RL: Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst. 2010, 102: 170-178. 10.1093/jnci/djp482.CrossRefPubMed Virnig BA, Tuttle TM, Shamliyan T, Kane RL: Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst. 2010, 102: 170-178. 10.1093/jnci/djp482.CrossRefPubMed
8.
go back to reference Andreopoulou E, Sparano JA: Chemotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer: an overview. Curr Breast Cancer Rep. 2013, 5: 42-50. 10.1007/s12609-012-0097-1.CrossRefPubMedCentralPubMed Andreopoulou E, Sparano JA: Chemotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer: an overview. Curr Breast Cancer Rep. 2013, 5: 42-50. 10.1007/s12609-012-0097-1.CrossRefPubMedCentralPubMed
9.
go back to reference Albain KS, Nag SM, Calderillo-Ruiz G, Jordaan JP, Llombart AC, Pluzanska A, Rolski J, Melemed AS, Reyes-Vidal JM, Sekhon JS, Simms L, O‘Shaughnessy J: Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol. 2008, 26: 3950-3957. 10.1200/JCO.2007.11.9362.CrossRefPubMed Albain KS, Nag SM, Calderillo-Ruiz G, Jordaan JP, Llombart AC, Pluzanska A, Rolski J, Melemed AS, Reyes-Vidal JM, Sekhon JS, Simms L, O‘Shaughnessy J: Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol. 2008, 26: 3950-3957. 10.1200/JCO.2007.11.9362.CrossRefPubMed
10.
go back to reference Heinemann V: Gemcitabine plus cisplatin for the treatment of metastatic breast cancer. Clin Breast Cancer. 2002, 1: 24-29. 10.3816/CBC.2002.s.006.CrossRef Heinemann V: Gemcitabine plus cisplatin for the treatment of metastatic breast cancer. Clin Breast Cancer. 2002, 1: 24-29. 10.3816/CBC.2002.s.006.CrossRef
11.
go back to reference Heinemann V, Quietzsch D, Gieseler F, Gonnermann M, Schöneküs H, Rost A, Neuhaus H, Haag C, Clemens M, Heinrich B, Vehling-Kaiser U, Fuchs M, Fleckenstein D, Gesierich W, Uthgenannt D, Einsele H, Holstege A, Hinke A, Schalhorn A, Wilkowski R: Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol. 2006, 24: 3946-3952. 10.1200/JCO.2005.05.1490.CrossRefPubMed Heinemann V, Quietzsch D, Gieseler F, Gonnermann M, Schöneküs H, Rost A, Neuhaus H, Haag C, Clemens M, Heinrich B, Vehling-Kaiser U, Fuchs M, Fleckenstein D, Gesierich W, Uthgenannt D, Einsele H, Holstege A, Hinke A, Schalhorn A, Wilkowski R: Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol. 2006, 24: 3946-3952. 10.1200/JCO.2005.05.1490.CrossRefPubMed
12.
go back to reference O‘Shaughnessy J, Vukelja SJ, Marsland T, Kimmel G, Ratnam S, Pippen J: Phase II trial of gemcitabine plus trastuzumab in metastatic breast cancer patients previously treated with chemotherapy: preliminary results. Clin Breast Cancer. 2002, 1: 17-20. 10.3816/CBC.2002.s.004.CrossRef O‘Shaughnessy J, Vukelja SJ, Marsland T, Kimmel G, Ratnam S, Pippen J: Phase II trial of gemcitabine plus trastuzumab in metastatic breast cancer patients previously treated with chemotherapy: preliminary results. Clin Breast Cancer. 2002, 1: 17-20. 10.3816/CBC.2002.s.004.CrossRef
13.
go back to reference Sledge GW: Gemcitabine, paclitaxel, and trastuzumab in metastatic breast cancer. Oncology (Williston Park). 2003, 17: 33-35. Sledge GW: Gemcitabine, paclitaxel, and trastuzumab in metastatic breast cancer. Oncology (Williston Park). 2003, 17: 33-35.
14.
go back to reference Ahmed N, Abubaker K, Findlay J, Quinn M: Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets. 2010, 10: 268-278. 10.2174/156800910791190175.CrossRefPubMed Ahmed N, Abubaker K, Findlay J, Quinn M: Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets. 2010, 10: 268-278. 10.2174/156800910791190175.CrossRefPubMed
15.
go back to reference Abubaker K, Latifi A, Luwor R, Nazaretian S, Zhu H, Quinn MA, Thompson EW, Findlay JK, Ahmed N: Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol Cancer. 2013, 12: 24-10.1186/1476-4598-12-24.CrossRefPubMedCentralPubMed Abubaker K, Latifi A, Luwor R, Nazaretian S, Zhu H, Quinn MA, Thompson EW, Findlay JK, Ahmed N: Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol Cancer. 2013, 12: 24-10.1186/1476-4598-12-24.CrossRefPubMedCentralPubMed
16.
go back to reference Lawrence TS, Blackstock AW, McGinn C: The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol. 2003, 13: 13-21. 10.1053/srao.2003.50002.CrossRefPubMed Lawrence TS, Blackstock AW, McGinn C: The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol. 2003, 13: 13-21. 10.1053/srao.2003.50002.CrossRefPubMed
17.
go back to reference Kvols LK: Radiation sensitizers: a selective review of molecules targeting DNA and non-DNA targets. J Nucl Med. 2005, 46: 187S-190S.PubMed Kvols LK: Radiation sensitizers: a selective review of molecules targeting DNA and non-DNA targets. J Nucl Med. 2005, 46: 187S-190S.PubMed
18.
go back to reference Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V: Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995, 22: 3-10.PubMed Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V: Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995, 22: 3-10.PubMed
19.
go back to reference Burnett JC, Rossi JJ, Tiemann K: Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. 2011, 6: 1130-1146. 10.1002/biot.201100054.CrossRefPubMedCentralPubMed Burnett JC, Rossi JJ, Tiemann K: Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. 2011, 6: 1130-1146. 10.1002/biot.201100054.CrossRefPubMedCentralPubMed
20.
go back to reference Engel J, Emons G, Pinski J, Schally AV: AEZS-108: a targeted cytotoxic analog of LHRH for the treatment of cancers positive for LHRH receptors. Expert Opin Investig Drug. 2012, 21: 891-899. 10.1517/13543784.2012.685128.CrossRef Engel J, Emons G, Pinski J, Schally AV: AEZS-108: a targeted cytotoxic analog of LHRH for the treatment of cancers positive for LHRH receptors. Expert Opin Investig Drug. 2012, 21: 891-899. 10.1517/13543784.2012.685128.CrossRef
21.
go back to reference Gajria D, Chandarlapaty S: HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011, 11: 263-275. 10.1586/era.10.226.CrossRefPubMedCentralPubMed Gajria D, Chandarlapaty S: HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011, 11: 263-275. 10.1586/era.10.226.CrossRefPubMedCentralPubMed
22.
go back to reference García-Becerra R, Santos N, Díaz L, Camacho J: Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci. 2012, 14: 108-145. 10.3390/ijms14010108.CrossRefPubMedCentralPubMed García-Becerra R, Santos N, Díaz L, Camacho J: Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci. 2012, 14: 108-145. 10.3390/ijms14010108.CrossRefPubMedCentralPubMed
23.
go back to reference Klarenbeek S, van Miltenburg MH, Jonkers J: Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol. 2013, 7: 146-164. 10.1016/j.molonc.2013.02.003.CrossRefPubMed Klarenbeek S, van Miltenburg MH, Jonkers J: Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol. 2013, 7: 146-164. 10.1016/j.molonc.2013.02.003.CrossRefPubMed
24.
go back to reference Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007, 13: 4429-4434. 10.1158/1078-0432.CCR-06-3045.CrossRefPubMed Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007, 13: 4429-4434. 10.1158/1078-0432.CCR-06-3045.CrossRefPubMed
25.
go back to reference Chen R, Chen X, Beebe SJ: Nanosecond pulsed electric field (nsPEF) ablation as an alternative or adjunct to surgery for treatment of cancer. Surg Current Res. 2013, S12: 005- Chen R, Chen X, Beebe SJ: Nanosecond pulsed electric field (nsPEF) ablation as an alternative or adjunct to surgery for treatment of cancer. Surg Current Res. 2013, S12: 005-
26.
go back to reference Schoenbach KH, Beebe SJ, Buescher ES: Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics. 2001, 22: 440-448. 10.1002/bem.71.CrossRefPubMed Schoenbach KH, Beebe SJ, Buescher ES: Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics. 2001, 22: 440-448. 10.1002/bem.71.CrossRefPubMed
27.
go back to reference Beebe SJ, Chen Y-J, Sain NM, Schoenbach KH, Xiao S: Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS One. 2012, 7: e51349-10.1371/journal.pone.0051349.CrossRefPubMedCentralPubMed Beebe SJ, Chen Y-J, Sain NM, Schoenbach KH, Xiao S: Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS One. 2012, 7: e51349-10.1371/journal.pone.0051349.CrossRefPubMedCentralPubMed
28.
go back to reference Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA: Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun. 2003, 310: 286-295. 10.1016/j.bbrc.2003.08.140.CrossRefPubMed Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA: Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun. 2003, 310: 286-295. 10.1016/j.bbrc.2003.08.140.CrossRefPubMed
29.
go back to reference White JA, Blackmore PF, Schoenbach KH, Beebe SJ: Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem. 2004, 279: 22964-22972. 10.1074/jbc.M311135200.CrossRefPubMed White JA, Blackmore PF, Schoenbach KH, Beebe SJ: Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem. 2004, 279: 22964-22972. 10.1074/jbc.M311135200.CrossRefPubMed
30.
go back to reference Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP: Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers-in cells and in silico. Phys Biol. 2006, 3: 233-247. 10.1088/1478-3975/3/4/001.CrossRefPubMed Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP: Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers-in cells and in silico. Phys Biol. 2006, 3: 233-247. 10.1088/1478-3975/3/4/001.CrossRefPubMed
31.
go back to reference Beebe SJ, Fox PM, Rec LJ, Buescher ES, Somers K, Schoenbach KH: Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci. 2002, 30: 286-292. 10.1109/TPS.2002.1003872.CrossRef Beebe SJ, Fox PM, Rec LJ, Buescher ES, Somers K, Schoenbach KH: Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci. 2002, 30: 286-292. 10.1109/TPS.2002.1003872.CrossRef
32.
go back to reference Stacey M, Fox P, Buescher S, Kolb J: Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry. 2011, 82: 131-134. 10.1016/j.bioelechem.2011.06.002.CrossRefPubMed Stacey M, Fox P, Buescher S, Kolb J: Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry. 2011, 82: 131-134. 10.1016/j.bioelechem.2011.06.002.CrossRefPubMed
33.
go back to reference Morotomi-Yano K, Oyadomari S, Akiyama H, Yano K: Nanosecond pulsed electric fields act as a novel cellular stress that induces translational suppression accompanied by eIF2α phosphorylation and 4E-BP1 dephosphorylation. Exp Cell Res. 2012, 318: 1733-1744. 10.1016/j.yexcr.2012.04.016.CrossRefPubMed Morotomi-Yano K, Oyadomari S, Akiyama H, Yano K: Nanosecond pulsed electric fields act as a novel cellular stress that induces translational suppression accompanied by eIF2α phosphorylation and 4E-BP1 dephosphorylation. Exp Cell Res. 2012, 318: 1733-1744. 10.1016/j.yexcr.2012.04.016.CrossRefPubMed
34.
go back to reference Morotomi-Yano K, Akiyama H, Yano K: Nanosecond pulsed electric fields activate AMP-activated protein kinase: implications for calcium-mediated activation of cellular signaling. Biochem Biophys Res Commun. 2012, 428: 371-375. 10.1016/j.bbrc.2012.10.061.CrossRefPubMed Morotomi-Yano K, Akiyama H, Yano K: Nanosecond pulsed electric fields activate AMP-activated protein kinase: implications for calcium-mediated activation of cellular signaling. Biochem Biophys Res Commun. 2012, 428: 371-375. 10.1016/j.bbrc.2012.10.061.CrossRefPubMed
35.
go back to reference Morotomi-Yano K, Akiyama H, Yano K: Nanosecond pulsed electric fields activate MAPK pathways in human cells. Arch Biochem Biophys. 2011, 515: 99-106. 10.1016/j.abb.2011.09.002.CrossRefPubMed Morotomi-Yano K, Akiyama H, Yano K: Nanosecond pulsed electric fields activate MAPK pathways in human cells. Arch Biochem Biophys. 2011, 515: 99-106. 10.1016/j.abb.2011.09.002.CrossRefPubMed
36.
go back to reference Morotomi-Yano K, Uemura Y, Katsuki S, Akiyama H, Yano K: Activation of the JNK pathway by nanosecond pulsed electric fields. Biochem Biophys Res Commun. 2011, 408: 471-476. 10.1016/j.bbrc.2011.04.056.CrossRefPubMed Morotomi-Yano K, Uemura Y, Katsuki S, Akiyama H, Yano K: Activation of the JNK pathway by nanosecond pulsed electric fields. Biochem Biophys Res Commun. 2011, 408: 471-476. 10.1016/j.bbrc.2011.04.056.CrossRefPubMed
37.
go back to reference Beebe SJ, Fox PM, Rec LJ, Willis LK, Schoenbach KH: Nanosecond, high intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 2003, 17: 1493-1495.PubMed Beebe SJ, Fox PM, Rec LJ, Willis LK, Schoenbach KH: Nanosecond, high intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 2003, 17: 1493-1495.PubMed
38.
go back to reference Ren W, Sain NM, Beebe SJ: Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells. Biochem Biophys Res Commun. 2012, 421: 808-812. 10.1016/j.bbrc.2012.04.094.CrossRefPubMed Ren W, Sain NM, Beebe SJ: Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells. Biochem Biophys Res Commun. 2012, 421: 808-812. 10.1016/j.bbrc.2012.04.094.CrossRefPubMed
39.
go back to reference Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson JR, Beebe SJ, Kolb JF, Schoenbach KH: Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun. 2006, 343: 351-360. 10.1016/j.bbrc.2006.02.181.CrossRefPubMedCentralPubMed Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson JR, Beebe SJ, Kolb JF, Schoenbach KH: Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun. 2006, 343: 351-360. 10.1016/j.bbrc.2006.02.181.CrossRefPubMedCentralPubMed
40.
go back to reference Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ: Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res. 2010, 2010 (23): 554-563. 10.1111/j.1755-148X.2010.00704.x.CrossRef Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ: Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res. 2010, 2010 (23): 554-563. 10.1111/j.1755-148X.2010.00704.x.CrossRef
41.
go back to reference Chen X, Zhuang J, Kolb JF, Schoenbach KH, Beebe SJ: Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields. Technol Cancer Res Treat. 2012, 11: 83-93.PubMed Chen X, Zhuang J, Kolb JF, Schoenbach KH, Beebe SJ: Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields. Technol Cancer Res Treat. 2012, 11: 83-93.PubMed
42.
go back to reference Nuccitelli R, Tran K, Athos B, Kreis M, Nuccitelli P, Chang KS, Epstein EH, Tang JY: Nanoelectroablation therapy for murine basal cell carcinoma. Biochem Biophys Res Commun. 2012, 424: 446-450. 10.1016/j.bbrc.2012.06.129.CrossRefPubMedCentralPubMed Nuccitelli R, Tran K, Athos B, Kreis M, Nuccitelli P, Chang KS, Epstein EH, Tang JY: Nanoelectroablation therapy for murine basal cell carcinoma. Biochem Biophys Res Commun. 2012, 424: 446-450. 10.1016/j.bbrc.2012.06.129.CrossRefPubMedCentralPubMed
43.
go back to reference Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L, Gundersen MA, Koeffler HP:In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer. 2007, 121: 675-682. 10.1002/ijc.22723.CrossRefPubMed Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L, Gundersen MA, Koeffler HP:In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer. 2007, 121: 675-682. 10.1002/ijc.22723.CrossRefPubMed
44.
go back to reference Yin D, Yang WG, Weissberg J, Goff CB, Chen W, Kuwayama Y, Leiter A, Xing H, Meixel A, Gaut D, Kirkbir F, Sawcer D, Vernier PT, Said JW, Gundersen MA, Koeffler HP: Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF). PLoS One. 2012, 7: e43891-10.1371/journal.pone.0043891.CrossRefPubMedCentralPubMed Yin D, Yang WG, Weissberg J, Goff CB, Chen W, Kuwayama Y, Leiter A, Xing H, Meixel A, Gaut D, Kirkbir F, Sawcer D, Vernier PT, Said JW, Gundersen MA, Koeffler HP: Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF). PLoS One. 2012, 7: e43891-10.1371/journal.pone.0043891.CrossRefPubMedCentralPubMed
45.
go back to reference Nuccitelli R, Huynh J, Lui K, Wood R, Kreis M, Athos B, Nuccitelli P: Nanoelectroablation of human pancreatic carcinoma in a murine xenograft model without recurrence. Int J Cancer. 2013, 132: 1933-1939. 10.1002/ijc.27860.CrossRefPubMedCentralPubMed Nuccitelli R, Huynh J, Lui K, Wood R, Kreis M, Athos B, Nuccitelli P: Nanoelectroablation of human pancreatic carcinoma in a murine xenograft model without recurrence. Int J Cancer. 2013, 132: 1933-1939. 10.1002/ijc.27860.CrossRefPubMedCentralPubMed
46.
go back to reference Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002, 9: 459-470. 10.1016/S1097-2765(02)00482-3.CrossRefPubMed Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002, 9: 459-470. 10.1016/S1097-2765(02)00482-3.CrossRefPubMed
47.
go back to reference Salem SD, Abou-Tarboush FM, Saeed NM, Al-Qadasi WD, Farah MA, Al-Buhairi M, Al-Harbi N, Alhazza I, Alsbeih G: Involvement of p53 in gemcitabine mediated cytotoxicity and radiosensitivity in breast cancer cell lines. Gene. 2012, 498: 300-307. 10.1016/j.gene.2012.01.099.CrossRefPubMed Salem SD, Abou-Tarboush FM, Saeed NM, Al-Qadasi WD, Farah MA, Al-Buhairi M, Al-Harbi N, Alhazza I, Alsbeih G: Involvement of p53 in gemcitabine mediated cytotoxicity and radiosensitivity in breast cancer cell lines. Gene. 2012, 498: 300-307. 10.1016/j.gene.2012.01.099.CrossRefPubMed
48.
go back to reference Lawrence TS, Davis MA, Hough A, Rehemtulla A: The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (gemcitabine)-mediated radiosensitization. Clin Cancer Res. 2001, 7: 314-319.PubMed Lawrence TS, Davis MA, Hough A, Rehemtulla A: The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (gemcitabine)-mediated radiosensitization. Clin Cancer Res. 2001, 7: 314-319.PubMed
49.
go back to reference Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G: Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res. 2000, 60: 7133-7141.PubMed Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G: Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res. 2000, 60: 7133-7141.PubMed
50.
go back to reference Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ: Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys. 2010, 497: 82-89. 10.1016/j.abb.2010.03.008.CrossRefPubMed Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ: Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys. 2010, 497: 82-89. 10.1016/j.abb.2010.03.008.CrossRefPubMed
51.
go back to reference Song J, Joshi RP, Beebe SJ: Cellular apoptosis by nanosecond, high-intensity electric pulses: model evaluation of the pulsing threshold and extrinsic pathway. Bioelectrochemistry. 2010, 79: 179-186. 10.1016/j.bioelechem.2010.03.002.CrossRefPubMed Song J, Joshi RP, Beebe SJ: Cellular apoptosis by nanosecond, high-intensity electric pulses: model evaluation of the pulsing threshold and extrinsic pathway. Bioelectrochemistry. 2010, 79: 179-186. 10.1016/j.bioelechem.2010.03.002.CrossRefPubMed
52.
go back to reference Ren W, Beebe SJ: An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis. 2011, 16: 382-393. 10.1007/s10495-010-0572-y.CrossRefPubMedCentralPubMed Ren W, Beebe SJ: An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis. 2011, 16: 382-393. 10.1007/s10495-010-0572-y.CrossRefPubMedCentralPubMed
53.
go back to reference Hellwig CT, Rehm M: TRAIL signaling and synergy mechanisms used in TRAIL-based combination therapies. Mol Cancer Ther. 2012, 11: 3-13. 10.1158/1535-7163.MCT-11-0434.CrossRefPubMed Hellwig CT, Rehm M: TRAIL signaling and synergy mechanisms used in TRAIL-based combination therapies. Mol Cancer Ther. 2012, 11: 3-13. 10.1158/1535-7163.MCT-11-0434.CrossRefPubMed
54.
go back to reference Galluzzi L, Kroemer G: Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008, 135: 1161-1163. 10.1016/j.cell.2008.12.004.CrossRefPubMed Galluzzi L, Kroemer G: Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008, 135: 1161-1163. 10.1016/j.cell.2008.12.004.CrossRefPubMed
55.
go back to reference Wu W, Liu P, Li J: Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol. 2012, 82: 249-258. 10.1016/j.critrevonc.2011.08.004.CrossRefPubMed Wu W, Liu P, Li J: Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol. 2012, 82: 249-258. 10.1016/j.critrevonc.2011.08.004.CrossRefPubMed
56.
go back to reference Kim SJ, Li J: Caspase blockade induces RIP3-mediated programmed necrosis in toll-like receptor-activated microglia. Cell Death Dis. 2013, 4: e716-10.1038/cddis.2013.238.CrossRefPubMedCentralPubMed Kim SJ, Li J: Caspase blockade induces RIP3-mediated programmed necrosis in toll-like receptor-activated microglia. Cell Death Dis. 2013, 4: e716-10.1038/cddis.2013.238.CrossRefPubMedCentralPubMed
57.
go back to reference Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F: Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys. 2003, 57: 1075-1083. 10.1016/S0360-3016(03)01443-3.CrossRefPubMed Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F: Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys. 2003, 57: 1075-1083. 10.1016/S0360-3016(03)01443-3.CrossRefPubMed
58.
go back to reference Morgan MA, Parsels LA, Maybaum J, Lawrence TS: Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review. Clin Cancer Res. 2008, 14: 6744-6750. 10.1158/1078-0432.CCR-08-1032.CrossRefPubMedCentralPubMed Morgan MA, Parsels LA, Maybaum J, Lawrence TS: Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review. Clin Cancer Res. 2008, 14: 6744-6750. 10.1158/1078-0432.CCR-08-1032.CrossRefPubMedCentralPubMed
59.
go back to reference Hall EH, Schoenbach KH, Beebe SJ: Nanosecond pulsed electric fields have differential effects on cells in the S-phase. DNA Cell Biol. 2007, 26: 160-171. 10.1089/dna.2006.0514.CrossRefPubMed Hall EH, Schoenbach KH, Beebe SJ: Nanosecond pulsed electric fields have differential effects on cells in the S-phase. DNA Cell Biol. 2007, 26: 160-171. 10.1089/dna.2006.0514.CrossRefPubMed
60.
Metadata
Title
Enhanced breast cancer therapy with nsPEFs and low concentrations of gemcitabine
Authors
Shan Wu
Jinsong Guo
Wendong Wei
Jue Zhang
Jing Fang
Stephen J Beebe
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2014
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-014-0098-4

Other articles of this Issue 1/2014

Cancer Cell International 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine