Skip to main content
Top
Published in: Journal of NeuroVirology 2/2011

01-04-2011

Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD

Author: Laura Manuelidis

Published in: Journal of NeuroVirology | Issue 2/2011

Login to get access

Abstract

In transmissible encephalopathies (TSEs), it is commonly believed that the host prion protein transforms itself into an infectious form that encodes the many distinct TSE agent strains without any nucleic acid. Using a Ф29 polymerase and chromatography strategy, highly infectious culture and brain preparations of three different geographic TSE agents all contained novel circular DNAs. Two circular “Sphinx” sequences, of 1.8 and 2.4 kb, copurified with infectious particles in sucrose gradients and, as many protected viruses, resisted nuclease digestion. Each contained a replicase ORF related to microviridae that infect commensal Acinetobacter. Infectious gradient fractions also contained nuclease-resistant 16 kb mitochondrial DNAs and analysis of >4,000 nt demonstrated a 100% identity with their species-specific sequences. This confirmed the fidelity of the newly identified sequences detailed here. Conserved replicase regions within the two Sphinx DNAs were ultimately detected by PCR in cytoplasmic preparations from normal cells and brain but were 2,500-fold less than in parallel-infected samples. No trace of the two Sphinx replicases was found in enzymes, detergents, or other preparative materials using exhaustive PCR cycles. The Sphinx sequences uncovered here could have a role in TSE infections despite their apparently symbiotic, low-level persistence in normal cells and tissues. These, as well as other cryptic circular DNAs, may cause or contribute to neurodegeneration and infection-associated tumor transformation. The current results also raise the intriguing possibility that mammals may incorporate more of the prokaryotic world in their cytoplasm than previously recognized.
Literature
go back to reference Aiken JM, Williamson JL, Marsh RF (1989) Evidence of mitochondrial involvement in scrapie infection. J Virol 63:1686–1694PubMed Aiken JM, Williamson JL, Marsh RF (1989) Evidence of mitochondrial involvement in scrapie infection. J Virol 63:1686–1694PubMed
go back to reference Aiken JM, Williamson JL, Borchardt M, Marsh RF (1990) Presence of mitochondrial D-loop DNA in scrapie-infected brain preparations enriched for prion protein. J Virol 64:3265–3268PubMed Aiken JM, Williamson JL, Borchardt M, Marsh RF (1990) Presence of mitochondrial D-loop DNA in scrapie-infected brain preparations enriched for prion protein. J Virol 64:3265–3268PubMed
go back to reference Akowitz A, Sklaviadis T, Manuelidis L (1994) Endogenous viral complexes with long RNA cosediment with the agent of Creutzfeldt–Jakob disease. Nucleic Acids Res 22:1101–1107PubMedCrossRef Akowitz A, Sklaviadis T, Manuelidis L (1994) Endogenous viral complexes with long RNA cosediment with the agent of Creutzfeldt–Jakob disease. Nucleic Acids Res 22:1101–1107PubMedCrossRef
go back to reference Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix J, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100:603–615PubMedCrossRef Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix J, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100:603–615PubMedCrossRef
go back to reference Arjona A, Simarro L, Islinger F, Nishida N, Manuelidis L (2004) Two Creutzfeldt–Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci USA 101:8768–8773PubMedCrossRef Arjona A, Simarro L, Islinger F, Nishida N, Manuelidis L (2004) Two Creutzfeldt–Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci USA 101:8768–8773PubMedCrossRef
go back to reference Baker CA, Martin D, Manuelidis L (2002) Microglia from CJD brain are infectious and show specific mRNA activation profiles. J Virol 76:10905–10913PubMedCrossRef Baker CA, Martin D, Manuelidis L (2002) Microglia from CJD brain are infectious and show specific mRNA activation profiles. J Virol 76:10905–10913PubMedCrossRef
go back to reference Bian J, Napier D, Khaychuck V, Angers R, Graham C, Telling G (2010) Cell-based quantification of chronic wasting disease prions. J Virol 84:8322–8326PubMedCrossRef Bian J, Napier D, Khaychuck V, Angers R, Graham C, Telling G (2010) Cell-based quantification of chronic wasting disease prions. J Virol 84:8322–8326PubMedCrossRef
go back to reference Bruce ME, Dickinson AG (1987) Biological evidence that scrapie has an independent genome. J Gen Virol 68:79–89PubMedCrossRef Bruce ME, Dickinson AG (1987) Biological evidence that scrapie has an independent genome. J Gen Virol 68:79–89PubMedCrossRef
go back to reference Davidson I, Shulman L (2008) Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 137:1–15PubMedCrossRef Davidson I, Shulman L (2008) Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 137:1–15PubMedCrossRef
go back to reference Dean F, Nelson J, Giesler T, Lasken R (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099PubMedCrossRef Dean F, Nelson J, Giesler T, Lasken R (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099PubMedCrossRef
go back to reference Diringer H, Gelderblom H, Hilmert H, Ozel M, Edelbluth C, Kimberlin RH (1983) Scrapie infectivity, fibrils and low molecular weight protein. Nature 306:476–478PubMedCrossRef Diringer H, Gelderblom H, Hilmert H, Ozel M, Edelbluth C, Kimberlin RH (1983) Scrapie infectivity, fibrils and low molecular weight protein. Nature 306:476–478PubMedCrossRef
go back to reference Dron M, Manuelidis L (1996) Visualization of viral candidate cDNAs in infectious brain fractions from Creutzfeldt–Jakob disease by representational difference analysis. J Neurovirol 2:240–248PubMedCrossRef Dron M, Manuelidis L (1996) Visualization of viral candidate cDNAs in infectious brain fractions from Creutzfeldt–Jakob disease by representational difference analysis. J Neurovirol 2:240–248PubMedCrossRef
go back to reference Edgeworth J, Gros N, Alden J, Joiner S, Wadsworth J, Linehan J, Brandner S, Jackson G, Weissmann C, Collinge J (2010) Spontaneous generation of mammalian prions. Proc Natl Acad Sci USA 107:14402–14406PubMedCrossRef Edgeworth J, Gros N, Alden J, Joiner S, Wadsworth J, Linehan J, Brandner S, Jackson G, Weissmann C, Collinge J (2010) Spontaneous generation of mammalian prions. Proc Natl Acad Sci USA 107:14402–14406PubMedCrossRef
go back to reference Elsner C, Dörries K (1992) Evidence of human polyomavirus BK and JC infection in normal brain tissue. Virology 191:72–80PubMedCrossRef Elsner C, Dörries K (1992) Evidence of human polyomavirus BK and JC infection in normal brain tissue. Virology 191:72–80PubMedCrossRef
go back to reference Falsig J, Nilsson K, Knowles T, Aguzzi A (2008) Chemical and biophysical insights into the propagation of prion strains. HFSP J 2:332–341PubMedCrossRef Falsig J, Nilsson K, Knowles T, Aguzzi A (2008) Chemical and biophysical insights into the propagation of prion strains. HFSP J 2:332–341PubMedCrossRef
go back to reference Fondi M, Bacci G, Brilli M, Papaleo M, Mengoni A, Vaneechoutte M, Dijkshoorn L, Fani R (2010) Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evolutionary Biol 10:59CrossRef Fondi M, Bacci G, Brilli M, Papaleo M, Mengoni A, Vaneechoutte M, Dijkshoorn L, Fani R (2010) Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evolutionary Biol 10:59CrossRef
go back to reference Franklin R (1956) X-ray diffraction studies of cucumber virus and three strains of tobacco mosaic virus. Biochim et Biophys Acta 19:203–211CrossRef Franklin R (1956) X-ray diffraction studies of cucumber virus and three strains of tobacco mosaic virus. Biochim et Biophys Acta 19:203–211CrossRef
go back to reference Geoghegan J, Valdes P, Orem N, Deleault N, Williamson R, Harris B, Supattapone S (2007) Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem 282:36341–36353PubMedCrossRef Geoghegan J, Valdes P, Orem N, Deleault N, Williamson R, Harris B, Supattapone S (2007) Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem 282:36341–36353PubMedCrossRef
go back to reference Kekarainen T, Martínez-Guinó L, Segalés J (2009) Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin. J Gen Virol 90:648–653PubMedCrossRef Kekarainen T, Martínez-Guinó L, Segalés J (2009) Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin. J Gen Virol 90:648–653PubMedCrossRef
go back to reference Li J, Browning S, Mahal S, Oelschlegel A, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327:869–872PubMedCrossRef Li J, Browning S, Mahal S, Oelschlegel A, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327:869–872PubMedCrossRef
go back to reference Liu Y, Sun R, Chakrabarty T, Manuelidis L (2008) A rapid accurate culture assay for infectivity in transmissible encephalopathies. J NeuroVirol 14:352–361PubMedCrossRef Liu Y, Sun R, Chakrabarty T, Manuelidis L (2008) A rapid accurate culture assay for infectivity in transmissible encephalopathies. J NeuroVirol 14:352–361PubMedCrossRef
go back to reference Ma S, Sakugawa H, Makino Y, Tadano M, Kinjo F, Saito A (2003) The complete genomic sequence of hepatitis delta virus genotype IIb prevalent in Okinawa, Japan. J Gen Virol 84:461–464PubMedCrossRef Ma S, Sakugawa H, Makino Y, Tadano M, Kinjo F, Saito A (2003) The complete genomic sequence of hepatitis delta virus genotype IIb prevalent in Okinawa, Japan. J Gen Virol 84:461–464PubMedCrossRef
go back to reference Maggi F, Fornai C, Vatteroni M, Siciliano G, Menichetti F, Tascini C, Specter S, Pistello M, Bendinelli M (2001) Low prevalence of TT virus in the cerebrospinal fluid of viremic patients with central nervous system disorders. J Med Virol 65:418–422PubMedCrossRef Maggi F, Fornai C, Vatteroni M, Siciliano G, Menichetti F, Tascini C, Specter S, Pistello M, Bendinelli M (2001) Low prevalence of TT virus in the cerebrospinal fluid of viremic patients with central nervous system disorders. J Med Virol 65:418–422PubMedCrossRef
go back to reference Manuelidis L (1994) Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann NY Acad Sci 724:259–281PubMedCrossRef Manuelidis L (1994) Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann NY Acad Sci 724:259–281PubMedCrossRef
go back to reference Manuelidis L (1997) Beneath the emperor's clothes: the body of data in scrapie and CJD. Annales de L’Institute Pasteur 8:311–326 Manuelidis L (1997) Beneath the emperor's clothes: the body of data in scrapie and CJD. Annales de L’Institute Pasteur 8:311–326
go back to reference Manuelidis L (2003) Transmissible encephalopathies: speculations and realities. Viral Immunology 16:123–139PubMedCrossRef Manuelidis L (2003) Transmissible encephalopathies: speculations and realities. Viral Immunology 16:123–139PubMedCrossRef
go back to reference Manuelidis L (2007) A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 100:897–915PubMedCrossRef Manuelidis L (2007) A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 100:897–915PubMedCrossRef
go back to reference Manuelidis L (2010) Transmissible encephalopathy agents: virulence, geography and clockwork. Virulence 1(2):101–104PubMedCrossRef Manuelidis L (2010) Transmissible encephalopathy agents: virulence, geography and clockwork. Virulence 1(2):101–104PubMedCrossRef
go back to reference Manuelidis L, Manuelidis EE (1981) Search for specific DNAs in Creutzfeldt–Jakob infectious brain fractions using nick translation. Virol 109:435–443CrossRef Manuelidis L, Manuelidis EE (1981) Search for specific DNAs in Creutzfeldt–Jakob infectious brain fractions using nick translation. Virol 109:435–443CrossRef
go back to reference Manuelidis L, Ward DC (1984) Chromosomal and nuclear distribution of the Hind III 1.9 kb repeat segment. Chromosoma (Berl) 91:28–38CrossRef Manuelidis L, Ward DC (1984) Chromosomal and nuclear distribution of the Hind III 1.9 kb repeat segment. Chromosoma (Berl) 91:28–38CrossRef
go back to reference Manuelidis E, Fritch W, Kim J, Manuelidis L (1987) Immortality of cell cultures derived from brains of mice and hamsters infected with Creutzfeldt–Jakob disease agent. Proc Natl Acad Sci 84:871–875PubMedCrossRef Manuelidis E, Fritch W, Kim J, Manuelidis L (1987) Immortality of cell cultures derived from brains of mice and hamsters infected with Creutzfeldt–Jakob disease agent. Proc Natl Acad Sci 84:871–875PubMedCrossRef
go back to reference Manuelidis L, Murdoch G, Manuelidis E (1988) Potential involvement of retroviral elements in human dementias. Ciba Found Symp 135:117–134PubMed Manuelidis L, Murdoch G, Manuelidis E (1988) Potential involvement of retroviral elements in human dementias. Ciba Found Symp 135:117–134PubMed
go back to reference Manuelidis L, Sklaviadis T, Akowitz A, Fritch W (1995) Viral particles are required for infection in neurodegenerative Creutzfeldt–Jakob disease. Proc Natl Acad Sci USA 92:5124–5128PubMedCrossRef Manuelidis L, Sklaviadis T, Akowitz A, Fritch W (1995) Viral particles are required for infection in neurodegenerative Creutzfeldt–Jakob disease. Proc Natl Acad Sci USA 92:5124–5128PubMedCrossRef
go back to reference Manuelidis L, Yu Z-X, Barquero N, Mullins B (2007) Cells infected with scrapie and Creutzfeldt–Jakob disease agents produce intracellular 25-nm virus-like particles. Proc Natl Acad Sci USA 104:1965–1970PubMedCrossRef Manuelidis L, Yu Z-X, Barquero N, Mullins B (2007) Cells infected with scrapie and Creutzfeldt–Jakob disease agents produce intracellular 25-nm virus-like particles. Proc Natl Acad Sci USA 104:1965–1970PubMedCrossRef
go back to reference Manuelidis L, Chakrabarty T, Miyazawa K, Nduom N-A, Emmerling K (2009a) The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt–Jakob disease and scrapie agents. Proc Natl Acad Sci USA 106:13529–13534PubMedCrossRef Manuelidis L, Chakrabarty T, Miyazawa K, Nduom N-A, Emmerling K (2009a) The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt–Jakob disease and scrapie agents. Proc Natl Acad Sci USA 106:13529–13534PubMedCrossRef
go back to reference Manuelidis L, Liu Y, Mullins B (2009b) Strain-specific viral properties of variant Creutzfeldt–Jakob Disease (vCJD) are encoded by the agent and not by host prion protein. J Cell Biochem 106:220–231PubMedCrossRef Manuelidis L, Liu Y, Mullins B (2009b) Strain-specific viral properties of variant Creutzfeldt–Jakob Disease (vCJD) are encoded by the agent and not by host prion protein. J Cell Biochem 106:220–231PubMedCrossRef
go back to reference Merz PA, Somerville RA, Wisniewski HM, Manuelidis L, Manuelidis EE (1983) Scrapie associated fibrils in Creutzfeldt–Jakob disease. Nature 306:474–476PubMedCrossRef Merz PA, Somerville RA, Wisniewski HM, Manuelidis L, Manuelidis EE (1983) Scrapie associated fibrils in Creutzfeldt–Jakob disease. Nature 306:474–476PubMedCrossRef
go back to reference Mizuta R, Mizuta M, Kitamura D (2003) Atomic force microscopy analysis of rolling circle amplification of plasmid DNA. Arch Histol Cytol 66:175–181PubMedCrossRef Mizuta R, Mizuta M, Kitamura D (2003) Atomic force microscopy analysis of rolling circle amplification of plasmid DNA. Arch Histol Cytol 66:175–181PubMedCrossRef
go back to reference Miyazawa K, Emmerling K, Manuelidis L (2010) Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell-to-cell contacts. J Cell Biochem 111:239–247PubMedCrossRef Miyazawa K, Emmerling K, Manuelidis L (2010) Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell-to-cell contacts. J Cell Biochem 111:239–247PubMedCrossRef
go back to reference Navidad P, Li H, Mankertz A, Meehan B (2008) Rolling-circle amplification for the detection of active porcine circovirus type 2 DNA replication in vitro. J Virol Methods 152:112–116PubMedCrossRef Navidad P, Li H, Mankertz A, Meehan B (2008) Rolling-circle amplification for the detection of active porcine circovirus type 2 DNA replication in vitro. J Virol Methods 152:112–116PubMedCrossRef
go back to reference Nicoll A, Collinge J (2009) Preventing prion pathogenicity by targeting the cellular prion protein. Infect Disord Drug Targets 9:48–57PubMed Nicoll A, Collinge J (2009) Preventing prion pathogenicity by targeting the cellular prion protein. Infect Disord Drug Targets 9:48–57PubMed
go back to reference Nishida N, Katamine S, Manuelidis L (2005) Reciprocal interference between specific CJD and scrapie agents in neural cell cultures. Science 310:493–496PubMedCrossRef Nishida N, Katamine S, Manuelidis L (2005) Reciprocal interference between specific CJD and scrapie agents in neural cell cultures. Science 310:493–496PubMedCrossRef
go back to reference Oesch B, Groth DF, Prusiner SB, Weissmann C (1988) Search for a scrapie-specific nucleic acid: a progress report. Ciba Found Symp 135:209–217PubMed Oesch B, Groth DF, Prusiner SB, Weissmann C (1988) Search for a scrapie-specific nucleic acid: a progress report. Ciba Found Symp 135:209–217PubMed
go back to reference Oleszak E, Manuelidis L, Manuelidis EE (1986) In vitro transformation elicited by Creutzfeldt–Jakob infected brain material. J Neuropathol Exp Neurol 45:489–502PubMedCrossRef Oleszak E, Manuelidis L, Manuelidis EE (1986) In vitro transformation elicited by Creutzfeldt–Jakob infected brain material. J Neuropathol Exp Neurol 45:489–502PubMedCrossRef
go back to reference Prusiner S, Baldwin M, Collinge J, DeArmond S, Marsh R, Tateishi J, Weissmann C (1995) Prions. Springer, Wien Prusiner S, Baldwin M, Collinge J, DeArmond S, Marsh R, Tateishi J, Weissmann C (1995) Prions. Springer, Wien
go back to reference Safar J, Kellings K, Serban A, Groth D, Cleaver J, Prusiner S, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79:10796–10806PubMedCrossRef Safar J, Kellings K, Serban A, Groth D, Cleaver J, Prusiner S, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79:10796–10806PubMedCrossRef
go back to reference Shlomchik M, Radebold K, Duclos N, Manuelidis L (2001) Neuroinvasion by a Creutzfeldt–Jakob disease agent in the absence of B cells and follicular dendritic cells. Proc Natl Acad Sci USA 98:9289–9294PubMedCrossRef Shlomchik M, Radebold K, Duclos N, Manuelidis L (2001) Neuroinvasion by a Creutzfeldt–Jakob disease agent in the absence of B cells and follicular dendritic cells. Proc Natl Acad Sci USA 98:9289–9294PubMedCrossRef
go back to reference Sklaviadis T, Dreyer R, Manuelidis L (1992) Analysis of Creutzfeldt–Jakob disease infectious fractions by gel permeation chromatography and sedimentation field flow fractionation. Virus Res 26:241–254PubMedCrossRef Sklaviadis T, Dreyer R, Manuelidis L (1992) Analysis of Creutzfeldt–Jakob disease infectious fractions by gel permeation chromatography and sedimentation field flow fractionation. Virus Res 26:241–254PubMedCrossRef
go back to reference Spelbrink J (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:19–32PubMed Spelbrink J (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:19–32PubMed
go back to reference Sun R, Liu Y, Zhang H, Manuelidis L (2008) Quantitative recovery of scrapie agent with minimal protein from highly infectious cultures. Viral Immunol 21:293–302PubMedCrossRef Sun R, Liu Y, Zhang H, Manuelidis L (2008) Quantitative recovery of scrapie agent with minimal protein from highly infectious cultures. Viral Immunol 21:293–302PubMedCrossRef
go back to reference Taruscio D, Manuelidis L (1991) Integration site preferences of endogenous retroviruses. Chromosoma 101:141–156PubMedCrossRef Taruscio D, Manuelidis L (1991) Integration site preferences of endogenous retroviruses. Chromosoma 101:141–156PubMedCrossRef
go back to reference van Tuyle G, Pavco P (1985) The rat liver mitochondrial DNA–protein complex: displaced single strands of replicative intermediates are protein coated. J Cell Biol 100:251–257PubMedCrossRef van Tuyle G, Pavco P (1985) The rat liver mitochondrial DNA–protein complex: displaced single strands of replicative intermediates are protein coated. J Cell Biol 100:251–257PubMedCrossRef
go back to reference Vincent I, Carrasco C, Guzylack-Piriou L, Herrmann B, McNeilly F, Allan G, Summerfield A, McCullough K (2005) Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 115:388–398PubMedCrossRef Vincent I, Carrasco C, Guzylack-Piriou L, Herrmann B, McNeilly F, Allan G, Summerfield A, McCullough K (2005) Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 115:388–398PubMedCrossRef
Metadata
Title
Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD
Author
Laura Manuelidis
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of NeuroVirology / Issue 2/2011
Print ISSN: 1355-0284
Electronic ISSN: 1538-2443
DOI
https://doi.org/10.1007/s13365-010-0007-0

Other articles of this Issue 2/2011

Journal of NeuroVirology 2/2011 Go to the issue