Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | NSCLC | Research

Zebrafish xenograft model for studying mechanism and treatment of non-small cell lung cancer brain metastasis

Authors: Ruo-Yue Fan, Jia-Qi Wu, Yu-Yang Liu, Xiang-Yu Liu, Si-Tong Qian, Chong-Yong Li, Ping Wei, Zhe Song, Ming-Fang He

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Brain metastasis (BM) is thought to be related to the mortality and poor prognosis of non-small cell lung cancer (NSCLC). Despite promising development of NSCLC treatment, the treatment of NSCLC BM is still not optimistic due to the existence of the blood-brain barrier (BBB) that prevent drug penetration, as well as the short median survival time of the patients left for treatment. In this context, further development of quick and effective pre-clinical models is needed in NSCLC BM treatment. Here, we report a model system using zebrafish to promote the development of drugs for patients with NSCLC BM.

Methods

Three different NSCLC cell lines (H1975, A549 and H1299) were used to establish zebrafish BM models. The embryo age and cell number for injection were first optimized. Metastatic cells were observed in the brain blood vessels of zebrafish and were verified by hematoxylin-eosin (HE) staining. Then, the metastasis potentials of H1975 and A549 with manipulated microRNA-330-3p (miR-330-3p) expression were also investigated. Finally, sensitivities of H1975 and A549 to osimertinib and gefitinib were tested.

Results

This zebrafish BM model could distinguish NSCLC cell lines with different BM potential. Over-expressed miR-330-p significantly improved the BM potential of the A549 cells while knockdown miR-330-p reduced the BM ability of the H1975 cells. Both osimertinib and gefitinib showed inhibition effect in zebrafish BM model with the inhibition rate higher than 50 %. H1975 cell showed much higher sensitivity to osimertinib rather than gefitinib both in vivo and in vitro.

Conclusions

We established zebrafish brain metastasis model for studying mechanism and treatment of NSCLC BM. This study provided a useful model for NSCLC brain metastasis that could be used to study the mechanism that drive NSCLC cells to the brain as well as identify potential therapeutic options.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Mehta MP, Rodrigus P, Terhaard CH, Rao A, Suh J, Roa W, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003;21(13):2529–36.PubMedCrossRef Mehta MP, Rodrigus P, Terhaard CH, Rao A, Suh J, Roa W, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003;21(13):2529–36.PubMedCrossRef
3.
go back to reference Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Current oncology reports. 2012;14(1):48–54.PubMedCrossRef Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Current oncology reports. 2012;14(1):48–54.PubMedCrossRef
4.
go back to reference An N, Jing W, Wang H, Li J, Liu Y, Yu J, et al. Risk factors for brain metastases in patients with non-small-cell lung cancer. Cancer medicine. 2018;7(12):6357–64.PubMedPubMedCentralCrossRef An N, Jing W, Wang H, Li J, Liu Y, Yu J, et al. Risk factors for brain metastases in patients with non-small-cell lung cancer. Cancer medicine. 2018;7(12):6357–64.PubMedPubMedCentralCrossRef
5.
go back to reference Hung YP, Sholl LM. Diagnostic and Predictive Immunohistochemistry for Non-Small Cell Lung Carcinomas. Adv Anat Pathol. 2018;25(6):374–86.PubMedCrossRef Hung YP, Sholl LM. Diagnostic and Predictive Immunohistochemistry for Non-Small Cell Lung Carcinomas. Adv Anat Pathol. 2018;25(6):374–86.PubMedCrossRef
6.
go back to reference Niu Z, Guo S, Cao J, Zhang Y, Guo X, Grossi F, et al. Immune checkpoint inhibitors for treatment of small-cell lung cancer: a systematic review and meta-analysis. Ann Transl Med. 2021;9(8):705.PubMedPubMedCentralCrossRef Niu Z, Guo S, Cao J, Zhang Y, Guo X, Grossi F, et al. Immune checkpoint inhibitors for treatment of small-cell lung cancer: a systematic review and meta-analysis. Ann Transl Med. 2021;9(8):705.PubMedPubMedCentralCrossRef
7.
go back to reference Li W, Yu H. Separating or combining immune checkpoint inhibitors (ICIs) and radiotherapy in the treatment of NSCLC brain metastases. Journal of cancer research and clinical oncology. 2020;146(1):137–52.PubMedCrossRef Li W, Yu H. Separating or combining immune checkpoint inhibitors (ICIs) and radiotherapy in the treatment of NSCLC brain metastases. Journal of cancer research and clinical oncology. 2020;146(1):137–52.PubMedCrossRef
8.
go back to reference Alomari A, Rauch PJ, Orsaria M, Minja FJ, Chiang VL, Vortmeyer AO. Radiologic and histologic consequences of radiosurgery for brain tumors. Journal of neuro-oncology. 2014;117(1):33–42.PubMedCrossRef Alomari A, Rauch PJ, Orsaria M, Minja FJ, Chiang VL, Vortmeyer AO. Radiologic and histologic consequences of radiosurgery for brain tumors. Journal of neuro-oncology. 2014;117(1):33–42.PubMedCrossRef
9.
go back to reference Khan AJ, Dicker AP. On the merits and limitations of whole-brain radiation therapy. J Clin Oncol. 2013;31(1):11–3.PubMedCrossRef Khan AJ, Dicker AP. On the merits and limitations of whole-brain radiation therapy. J Clin Oncol. 2013;31(1):11–3.PubMedCrossRef
10.
go back to reference Duma N, Santana-Davila R, Molina JR, Herbst RS, Morgensztern D, Boshoff C, et al. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc. 2019;94(8):1623–40.PubMedCrossRef Duma N, Santana-Davila R, Molina JR, Herbst RS, Morgensztern D, Boshoff C, et al. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc. 2019;94(8):1623–40.PubMedCrossRef
11.
go back to reference Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef
12.
go back to reference Ko EC, Raben D, Formenti SC. The Integration of Radiotherapy with Immunotherapy for the Treatment of Non-Small Cell Lung Cancer. Clin Cancer Res. 2018;24(23):5792–806.PubMedCrossRef Ko EC, Raben D, Formenti SC. The Integration of Radiotherapy with Immunotherapy for the Treatment of Non-Small Cell Lung Cancer. Clin Cancer Res. 2018;24(23):5792–806.PubMedCrossRef
13.
go back to reference Shetty V, Babu S. Management of CNS metastases in patients with EGFR mutation-positive NSCLC. Indian J Cancer. 2019;56(Supplement):S31-S7. Shetty V, Babu S. Management of CNS metastases in patients with EGFR mutation-positive NSCLC. Indian J Cancer. 2019;56(Supplement):S31-S7.
14.
go back to reference Wittlinger F, Laufer SA. The pre-clinical discovery and development of osimertinib used to treat non-small cell lung cancer. Expert opinion on drug discovery. 2021. Wittlinger F, Laufer SA. The pre-clinical discovery and development of osimertinib used to treat non-small cell lung cancer. Expert opinion on drug discovery. 2021.
15.
go back to reference Cai XT, Miao J, Sun RW, Wang SN, Molina-Vila MA, Chaib I, et al. Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer. Pharmacol Res. 2021;170:105701. Cai XT, Miao J, Sun RW, Wang SN, Molina-Vila MA, Chaib I, et al. Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer. Pharmacol Res. 2021;170:105701.
16.
go back to reference Wang S, Hu C, Xie F, Liu Y. Use of Programmed Death Receptor-1 and/or Programmed Death Ligand 1 Inhibitors for the Treatment of Brain Metastasis of Lung Cancer. OncoTargets and therapy. 2020;13:667–83.PubMedPubMedCentralCrossRef Wang S, Hu C, Xie F, Liu Y. Use of Programmed Death Receptor-1 and/or Programmed Death Ligand 1 Inhibitors for the Treatment of Brain Metastasis of Lung Cancer. OncoTargets and therapy. 2020;13:667–83.PubMedPubMedCentralCrossRef
17.
go back to reference MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nature reviews Drug discovery. 2015;14(10):721–31.PubMedCrossRef MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nature reviews Drug discovery. 2015;14(10):721–31.PubMedCrossRef
18.
go back to reference Brown HK, Schiavone K, Tazzyman S, Heymann D, Chico TJ. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert opinion on drug discovery. 2017;12(4):379–89.PubMedCrossRef Brown HK, Schiavone K, Tazzyman S, Heymann D, Chico TJ. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert opinion on drug discovery. 2017;12(4):379–89.PubMedCrossRef
19.
go back to reference Völkel P, Dupret B, Le Bourhis X, Angrand PO. [The zebrafish model in oncology]. Medecine sciences: M/S. 2018;34(4):345-53. Völkel P, Dupret B, Le Bourhis X, Angrand PO. [The zebrafish model in oncology]. Medecine sciences: M/S. 2018;34(4):345-53.
20.
go back to reference Wu JQ, Zhai J, Li CY, Tan AM, Wei P, Shen LZ, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res. 2017;36(1):160.PubMedPubMedCentralCrossRef Wu JQ, Zhai J, Li CY, Tan AM, Wei P, Shen LZ, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res. 2017;36(1):160.PubMedPubMedCentralCrossRef
21.
go back to reference Fior R, Póvoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci U S A. 2017;114(39):E8234-E43.CrossRef Fior R, Póvoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci U S A. 2017;114(39):E8234-E43.CrossRef
22.
go back to reference Zeng A, Ye T, Cao D, Huang X, Yang Y, Chen X, et al. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Scientific reports. 2017;7(1):14372.PubMedPubMedCentralCrossRef Zeng A, Ye T, Cao D, Huang X, Yang Y, Chen X, et al. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Scientific reports. 2017;7(1):14372.PubMedPubMedCentralCrossRef
23.
go back to reference Li Y, Chen T, Miao X, Yi X, Wang X, Zhao H, et al. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res. 2017;125(Pt B):246–57.PubMedCrossRef Li Y, Chen T, Miao X, Yi X, Wang X, Zhao H, et al. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res. 2017;125(Pt B):246–57.PubMedCrossRef
24.
go back to reference Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, et al. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol. 2017;138:471–96.PubMedCrossRef Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, et al. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol. 2017;138:471–96.PubMedCrossRef
25.
go back to reference Kim EA, Lee JH, Heo SJ, Jeon YJ. Saringosterol acetate isolated from Hizikia fusiforme, an edible brown alga, suppressed hepatocellular carcinoma growth and metastasis in a zebrafish xenograft model. Chemico-biological interactions. 2021;335:109362.PubMedCrossRef Kim EA, Lee JH, Heo SJ, Jeon YJ. Saringosterol acetate isolated from Hizikia fusiforme, an edible brown alga, suppressed hepatocellular carcinoma growth and metastasis in a zebrafish xenograft model. Chemico-biological interactions. 2021;335:109362.PubMedCrossRef
26.
go back to reference Nakayama J, Lu JW, Makinoshima H, Gong Z. A Novel Zebrafish Model of Metastasis Identifies the HSD11β1 Inhibitor Adrenosterone as a Suppressor of Epithelial-Mesenchymal Transition and Metastatic Dissemination. Molecular cancer research: MCR. 2020;18(3):477–87.PubMedCrossRef Nakayama J, Lu JW, Makinoshima H, Gong Z. A Novel Zebrafish Model of Metastasis Identifies the HSD11β1 Inhibitor Adrenosterone as a Suppressor of Epithelial-Mesenchymal Transition and Metastatic Dissemination. Molecular cancer research: MCR. 2020;18(3):477–87.PubMedCrossRef
27.
go back to reference Lee HW, Lee JI, Lee SJ, Cho HJ, Song HJ, Jeong DE, et al. Patient-derived xenografts from non-small cell lung cancer brain metastases are valuable translational platforms for the development of personalized targeted therapy. Clin Cancer Res. 2015;21(5):1172–82.PubMedCrossRef Lee HW, Lee JI, Lee SJ, Cho HJ, Song HJ, Jeong DE, et al. Patient-derived xenografts from non-small cell lung cancer brain metastases are valuable translational platforms for the development of personalized targeted therapy. Clin Cancer Res. 2015;21(5):1172–82.PubMedCrossRef
28.
go back to reference Yousefi M, Bahrami T, Salmaninejad A, Nosrati R, Ghaffari P, Ghaffari SH. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr). 2017;40(5):419–41.CrossRef Yousefi M, Bahrami T, Salmaninejad A, Nosrati R, Ghaffari P, Ghaffari SH. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr). 2017;40(5):419–41.CrossRef
29.
go back to reference Quiñonez-Silvero C, Hübner K, Herzog W. Development of the brain vasculature and the blood-brain barrier in zebrafish. Dev Biol. 2020;457(2):181–90.PubMedCrossRef Quiñonez-Silvero C, Hübner K, Herzog W. Development of the brain vasculature and the blood-brain barrier in zebrafish. Dev Biol. 2020;457(2):181–90.PubMedCrossRef
30.
go back to reference Eliceiri BP, Gonzalez AM, Baird A. Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods in molecular biology (Clifton, NJ). 2011;686:371–8. Eliceiri BP, Gonzalez AM, Baird A. Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods in molecular biology (Clifton, NJ). 2011;686:371–8.
31.
go back to reference Avenel C, Tolf A, Dragomir A, Carlbom IB. Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology. Frontiers in bioengineering and biotechnology. 2019;7:125.PubMedPubMedCentralCrossRef Avenel C, Tolf A, Dragomir A, Carlbom IB. Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology. Frontiers in bioengineering and biotechnology. 2019;7:125.PubMedPubMedCentralCrossRef
32.
go back to reference Guo Y, Fan Y, Pei X. Fangjihuangqi Decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model. Cancer medicine. 2020;9(7):2564–78.PubMedPubMedCentralCrossRef Guo Y, Fan Y, Pei X. Fangjihuangqi Decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model. Cancer medicine. 2020;9(7):2564–78.PubMedPubMedCentralCrossRef
33.
go back to reference Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Scientific reports. 2019;9(1):1514.PubMedPubMedCentralCrossRef Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Scientific reports. 2019;9(1):1514.PubMedPubMedCentralCrossRef
34.
go back to reference Li Y, Zhu X, Xu W, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochemical and biophysical research communications. 2013;431(3):560–5.PubMedCrossRef Li Y, Zhu X, Xu W, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochemical and biophysical research communications. 2013;431(3):560–5.PubMedCrossRef
35.
go back to reference Meng H, Wang K, Chen X, Guan X, Hu L, Xiong G, et al. MicroRNA-330-3p functions as an oncogene in human esophageal cancer by targeting programmed cell death 4. American journal of cancer research. 2015;5(3):1062–75.PubMedPubMedCentral Meng H, Wang K, Chen X, Guan X, Hu L, Xiong G, et al. MicroRNA-330-3p functions as an oncogene in human esophageal cancer by targeting programmed cell death 4. American journal of cancer research. 2015;5(3):1062–75.PubMedPubMedCentral
36.
go back to reference Wei CH, Wu G, Cai Q, Gao XC, Tong F, Zhou R, et al. MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol. 2017;10(1):125.PubMedPubMedCentralCrossRef Wei CH, Wu G, Cai Q, Gao XC, Tong F, Zhou R, et al. MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol. 2017;10(1):125.PubMedPubMedCentralCrossRef
37.
go back to reference Wei C, Zhang R, Cai Q, Gao X, Tong F, Dong J, et al. MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer. Aging. 2019;11(17):6734–61.PubMedPubMedCentralCrossRef Wei C, Zhang R, Cai Q, Gao X, Tong F, Dong J, et al. MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer. Aging. 2019;11(17):6734–61.PubMedPubMedCentralCrossRef
38.
go back to reference Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12(1):134.PubMedPubMedCentralCrossRef Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12(1):134.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Hotz JM, Thomas JR, Katz EN, Robey RW, Horibata S, Gottesman MM. ATP-binding cassette transporters at the zebrafish blood-brain barrier and the potential utility of the zebrafish as an in vivo model. Cancer drug resistance (Alhambra, Calif). 2021;4:620–33. Hotz JM, Thomas JR, Katz EN, Robey RW, Horibata S, Gottesman MM. ATP-binding cassette transporters at the zebrafish blood-brain barrier and the potential utility of the zebrafish as an in vivo model. Cancer drug resistance (Alhambra, Calif). 2021;4:620–33.
41.
go back to reference O’Brown NM, Megason SG, Gu C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife. 2019;8:e47326. O’Brown NM, Megason SG, Gu C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife. 2019;8:e47326.
42.
go back to reference Póvoa V, Rebelo de Almeida C, Maia-Gil M, Sobral D, Domingues M, Martinez-Lopez M, et al. Innate immune evasion revealed in a colorectal zebrafish xenograft model. Nature communications. 2021;12(1):1156.PubMedPubMedCentralCrossRef Póvoa V, Rebelo de Almeida C, Maia-Gil M, Sobral D, Domingues M, Martinez-Lopez M, et al. Innate immune evasion revealed in a colorectal zebrafish xenograft model. Nature communications. 2021;12(1):1156.PubMedPubMedCentralCrossRef
43.
go back to reference Bajoghli B, Dick AM, Claasen A, Doll L, Aghaallaei N. Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int J Mol Sci. 2019;20(17):4179. Bajoghli B, Dick AM, Claasen A, Doll L, Aghaallaei N. Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int J Mol Sci. 2019;20(17):4179.
44.
45.
go back to reference Schuermann A, Helker CS, Herzog W. Angiogenesis in zebrafish. Seminars in cell & developmental biology. 2014;31:106–14.CrossRef Schuermann A, Helker CS, Herzog W. Angiogenesis in zebrafish. Seminars in cell & developmental biology. 2014;31:106–14.CrossRef
46.
go back to reference Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38(1):173.PubMedPubMedCentralCrossRef Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38(1):173.PubMedPubMedCentralCrossRef
47.
go back to reference Huang JQ, Wei FK, Xu XL, Ye SX, Song JW, Ding PK, et al. SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/β-catenin pathway. Journal of translational medicine. 2019;17(1):143.PubMedPubMedCentralCrossRef Huang JQ, Wei FK, Xu XL, Ye SX, Song JW, Ding PK, et al. SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/β-catenin pathway. Journal of translational medicine. 2019;17(1):143.PubMedPubMedCentralCrossRef
48.
go back to reference Kim J, Chuang HC, Wolf NK, Nicolai CJ, Raulet DH, Saijo K, et al. Tumor-induced disruption of the blood-brain barrier promotes host death. Dev cell. 2021;56(19):2712–21. Kim J, Chuang HC, Wolf NK, Nicolai CJ, Raulet DH, Saijo K, et al. Tumor-induced disruption of the blood-brain barrier promotes host death. Dev cell. 2021;56(19):2712–21.
49.
go back to reference Yonemori K, Tsuta K, Ono M, Shimizu C, Hirakawa A, Hasegawa T, et al. Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer. 2010;116(2):302–8.PubMedCrossRef Yonemori K, Tsuta K, Ono M, Shimizu C, Hirakawa A, Hasegawa T, et al. Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer. 2010;116(2):302–8.PubMedCrossRef
50.
go back to reference Mehta AI, Brufsky AM, Sampson JH. Therapeutic approaches for HER2-positive brain metastases: circumventing the blood-brain barrier. Cancer treatment reviews. 2013;39(3):261–9.PubMedCrossRef Mehta AI, Brufsky AM, Sampson JH. Therapeutic approaches for HER2-positive brain metastases: circumventing the blood-brain barrier. Cancer treatment reviews. 2013;39(3):261–9.PubMedCrossRef
51.
go back to reference Astell KR, Sieger D. Investigating microglia-brain tumor cell interactions in vivo in the larval zebrafish brain. Methods Cell Biol. 2017;138:593–626.PubMedCrossRef Astell KR, Sieger D. Investigating microglia-brain tumor cell interactions in vivo in the larval zebrafish brain. Methods Cell Biol. 2017;138:593–626.PubMedCrossRef
52.
go back to reference Ballard P, Yates JW, Yang Z, Kim DW, Yang JC, Cantarini M, et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clin Cancer Res. 2016;22(20):5130–40.PubMedCrossRef Ballard P, Yates JW, Yang Z, Kim DW, Yang JC, Cantarini M, et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clin Cancer Res. 2016;22(20):5130–40.PubMedCrossRef
53.
go back to reference Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. International journal of cancer. 2011;129(11):2621–31.PubMedPubMedCentralCrossRef Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. International journal of cancer. 2011;129(11):2621–31.PubMedPubMedCentralCrossRef
54.
go back to reference Lu HY, Su D, Pan XD, Jiang H, Ma SL. Mutation and expression of multiple treatment response-related genes in a population with locally advanced non-small cell lung cancer. Oncology letters. 2012;3(2):415–20.PubMedCrossRef Lu HY, Su D, Pan XD, Jiang H, Ma SL. Mutation and expression of multiple treatment response-related genes in a population with locally advanced non-small cell lung cancer. Oncology letters. 2012;3(2):415–20.PubMedCrossRef
55.
go back to reference Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 2012;946:253–75.PubMedCrossRef Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 2012;946:253–75.PubMedCrossRef
56.
go back to reference Usai A, Di Franco G, Colucci P, Pollina LE, Vasile E, Funel N, et al. A Model of a Zebrafish Avatar for Co-Clinical Trials. Cancers. 2020;12(3):677. Usai A, Di Franco G, Colucci P, Pollina LE, Vasile E, Funel N, et al. A Model of a Zebrafish Avatar for Co-Clinical Trials. Cancers. 2020;12(3):677.
57.
go back to reference Di Franco G, Usai A, Funel N, Palmeri M, Montesanti IER, Bianchini M, et al. Use of zebrafish embryos as avatar of patients with pancreatic cancer: A new xenotransplantation model towards personalized medicine. World journal of gastroenterology. 2020;26(21):2792–809.PubMedPubMedCentralCrossRef Di Franco G, Usai A, Funel N, Palmeri M, Montesanti IER, Bianchini M, et al. Use of zebrafish embryos as avatar of patients with pancreatic cancer: A new xenotransplantation model towards personalized medicine. World journal of gastroenterology. 2020;26(21):2792–809.PubMedPubMedCentralCrossRef
58.
go back to reference Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nature reviews Cancer. 2020;20(5):263–73.PubMedPubMedCentralCrossRef Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nature reviews Cancer. 2020;20(5):263–73.PubMedPubMedCentralCrossRef
59.
go back to reference Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. Journal of translational medicine. 2017;15(1):229.PubMedPubMedCentralCrossRef Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. Journal of translational medicine. 2017;15(1):229.PubMedPubMedCentralCrossRef
Metadata
Title
Zebrafish xenograft model for studying mechanism and treatment of non-small cell lung cancer brain metastasis
Authors
Ruo-Yue Fan
Jia-Qi Wu
Yu-Yang Liu
Xiang-Yu Liu
Si-Tong Qian
Chong-Yong Li
Ping Wei
Zhe Song
Ming-Fang He
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02173-5

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine