Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

01-12-2021 | NSCLC | Review

Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer

Authors: Leylah M. Drusbosky, Richa Dawar, Estelamari Rodriguez, Chukwuemeka V. Ikpeazu

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

METex14 skipping mutations occur in about 3–4% of lung adenocarcinoma patients and 1–2% of patients with other lung cancer histology. The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) are established oncogenic drivers of NSCLC. A mutation that results in loss of exon 14 in the MET gene leads to dysregulation and inappropriate signaling that is associated with increased responsiveness to MET TKIs. Results from GEOMETRY mono-1 and VISION Phase I/II clinical trials demonstrated significant clinical activity in patients treated with the MET Exon 14 skipping mutation inhibitors capmatinib and tepotinib with tolerable toxicity profile. In the GEOMETRY mono-1 trial, capmatinib was especially active in treatment-naïve patients supporting the upfront testing of this oncogenic driver. Tepotinib demonstrated superior activity in the pretreated patients in the VISION trial. Savolitinib is another MET TKI that has shown efficacy in the first- and second-line settings, including patients with aggressive pulmonary sarcomatoid carcinoma. These studies have demonstrated that these TKIs can cross the blood brain barrier and demonstrated some activity toward CNS metastases. MET Exon 14 skipping mutation is detected by NGS-based testing of liquid or tissue biopsies, with preference for RNA-based NGS. The activity of capmatinib and tepotinib is limited by the development of acquired resistance. Current research is focused on strategies to overcome resistance and improve the effectiveness of these agents. Our aim is to review the current status of MET Exon 14 skipping mutation as it pertains NSCLC.
Literature
1.
go back to reference Laufer-Geva S, Rozenblum AB, Peled N, et al. The clinical impact of comprehensive genomic testing of circulating cell-free DNA in advanced lung cancer. J Thorac Oncol. 2018;13(11):1705–16.PubMedCrossRef Laufer-Geva S, Rozenblum AB, Peled N, et al. The clinical impact of comprehensive genomic testing of circulating cell-free DNA in advanced lung cancer. J Thorac Oncol. 2018;13(11):1705–16.PubMedCrossRef
2.
go back to reference Domchek SM, Mardis E, Carlisle JW, Owonikoko TK. Integrating genetic and genomic testing into oncology practice in ASCO EDUCATIONAL BOOK; 2020. e259–e263. Domchek SM, Mardis E, Carlisle JW, Owonikoko TK. Integrating genetic and genomic testing into oncology practice in ASCO EDUCATIONAL BOOK; 2020. e259–e263.
4.
go back to reference Mazieres J, Zalcman G, Crino L, et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol. 2015;33:992–9.PubMedCrossRef Mazieres J, Zalcman G, Crino L, et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol. 2015;33:992–9.PubMedCrossRef
5.
go back to reference Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium experience. J Thorac Oncol. 2015;10:768–77.PubMedPubMedCentralCrossRef Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium experience. J Thorac Oncol. 2015;10:768–77.PubMedPubMedCentralCrossRef
6.
go back to reference Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93.PubMedPubMedCentralCrossRef Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93.PubMedPubMedCentralCrossRef
7.
go back to reference Smyth EC, Sclafani F, Cunningham D. Emerging molecular targets in oncology: clinical potential of MET/hepatocyte growth-factor inhibitors. Onco Targets Ther. 2014;7:1001–14.PubMedPubMedCentralCrossRef Smyth EC, Sclafani F, Cunningham D. Emerging molecular targets in oncology: clinical potential of MET/hepatocyte growth-factor inhibitors. Onco Targets Ther. 2014;7:1001–14.PubMedPubMedCentralCrossRef
8.
go back to reference Schrock AB, Frampton GM, Suh J, et al. Characterization of 298 lung cancer patients harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016;11:1493–502.PubMedCrossRef Schrock AB, Frampton GM, Suh J, et al. Characterization of 298 lung cancer patients harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016;11:1493–502.PubMedCrossRef
9.
go back to reference Vuong HG, Ho ATN, Altibi AMA, et al. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—a systemic review and meta-analysis. Lung Cancer. 2018;123:76–82.PubMedCrossRef Vuong HG, Ho ATN, Altibi AMA, et al. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—a systemic review and meta-analysis. Lung Cancer. 2018;123:76–82.PubMedCrossRef
10.
go back to reference Baldacci S, Mazieres J, Tomasini P, Girard N, Guisier F, Audigier-Valette C, Monnet I, Wislez M, Pérol M, Dô P, Dansin E, Leduc C, Giroux Leprieur E, Moro-Sibilot D, Tulasne D, Kherrouche Z, Labreuche J, Cortot AB. Outcome of EGFR-mutated NSCLC patients with MET-driven resistance to EGFR tyrosine kinase inhibitors. Oncotarget. 2017;8(62):105103–14.PubMedPubMedCentralCrossRef Baldacci S, Mazieres J, Tomasini P, Girard N, Guisier F, Audigier-Valette C, Monnet I, Wislez M, Pérol M, Dô P, Dansin E, Leduc C, Giroux Leprieur E, Moro-Sibilot D, Tulasne D, Kherrouche Z, Labreuche J, Cortot AB. Outcome of EGFR-mutated NSCLC patients with MET-driven resistance to EGFR tyrosine kinase inhibitors. Oncotarget. 2017;8(62):105103–14.PubMedPubMedCentralCrossRef
11.
go back to reference Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Jänne PA, Verma S, Christensen J, Hammerman PS, Sholl LM. MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30. https://doi.org/10.1200/JCO.2015.63.4600.CrossRefPubMed Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Jänne PA, Verma S, Christensen J, Hammerman PS, Sholl LM. MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30. https://​doi.​org/​10.​1200/​JCO.​2015.​63.​4600.CrossRefPubMed
12.
go back to reference Vansteenkiste JF, Van De Kerkhove C, Wauters E, Van Mol P. Capmatinib for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19:659–71.PubMedCrossRef Vansteenkiste JF, Van De Kerkhove C, Wauters E, Van Mol P. Capmatinib for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19:659–71.PubMedCrossRef
13.
go back to reference Owusu BY, Galemmo R, Janetka J, Klampfer L. Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment. Cancers. 2017;9(4):35.PubMedCentralCrossRef Owusu BY, Galemmo R, Janetka J, Klampfer L. Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment. Cancers. 2017;9(4):35.PubMedCentralCrossRef
14.
go back to reference Gandino L, Munaron L, Naldini L, et al. Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene. J Biol Chem. 1991;266(24):16098–104.PubMedCrossRef Gandino L, Munaron L, Naldini L, et al. Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene. J Biol Chem. 1991;266(24):16098–104.PubMedCrossRef
15.
go back to reference Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.PubMedCrossRef Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.PubMedCrossRef
16.
go back to reference Davis KD, Lomboy A, Lawrence CA, et al. DNA-Based versus RNA-based detection of MET Exon 14 skipping events in lung cancer. J of Thorac Oncol. 2019;14(4):737–41.CrossRef Davis KD, Lomboy A, Lawrence CA, et al. DNA-Based versus RNA-based detection of MET Exon 14 skipping events in lung cancer. J of Thorac Oncol. 2019;14(4):737–41.CrossRef
17.
go back to reference Awad MM, Oxnard GR, Jackman DM, et al. MET Exon 14 mutations in non–small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30.PubMedCrossRef Awad MM, Oxnard GR, Jackman DM, et al. MET Exon 14 mutations in non–small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30.PubMedCrossRef
18.
go back to reference Kim EK, Kim KA, Lee CY, et al. Molecular diagnostic assays and clinicopathologic implications of MET Exon14 skipping mutation in none-small cell lung cancer. Clin Lung Cancer. 2019;20(1):e123-32. Kim EK, Kim KA, Lee CY, et al. Molecular diagnostic assays and clinicopathologic implications of MET Exon14 skipping mutation in none-small cell lung cancer. Clin Lung Cancer. 2019;20(1):e123-32.
19.
go back to reference Meric-Bernstam F, Brusco L, Shaw K, et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753–62.PubMedPubMedCentralCrossRef Meric-Bernstam F, Brusco L, Shaw K, et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753–62.PubMedPubMedCentralCrossRef
20.
go back to reference Aggarwal C, Thompson JC, Black TA, et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. AMA Oncol. 2019;5(2):173–80. Aggarwal C, Thompson JC, Black TA, et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. AMA Oncol. 2019;5(2):173–80.
21.
go back to reference Odegaard JI, Vincent JJ, Mortimer S, et al. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin Cancer Res. 2018;24(15):3539–49.PubMedCrossRef Odegaard JI, Vincent JJ, Mortimer S, et al. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin Cancer Res. 2018;24(15):3539–49.PubMedCrossRef
22.
go back to reference Reckamp KL, Patil T, Kirtane K, et al. Duration of targeted therapy in patients with advanced none-small cell lung cancer identified by circulating tumor DNA analysis. Clin Lung Cancer. 2020;21(6):545–52.PubMedCrossRef Reckamp KL, Patil T, Kirtane K, et al. Duration of targeted therapy in patients with advanced none-small cell lung cancer identified by circulating tumor DNA analysis. Clin Lung Cancer. 2020;21(6):545–52.PubMedCrossRef
23.
go back to reference Mack PC, Banks KC, Espenschied CR, et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: analysis of over 8000 cases. Cancer. 2020;126:3219–28.PubMedCrossRef Mack PC, Banks KC, Espenschied CR, et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: analysis of over 8000 cases. Cancer. 2020;126:3219–28.PubMedCrossRef
24.
go back to reference Helman E, Nguyen M, Karlovich CA, et al. Cell-free DNA next-generation sequencing prediction of response and resistance to third-generation EGFR inhibitor. Clin Lung Cancer. 2018;19(6):518–30.PubMedCrossRef Helman E, Nguyen M, Karlovich CA, et al. Cell-free DNA next-generation sequencing prediction of response and resistance to third-generation EGFR inhibitor. Clin Lung Cancer. 2018;19(6):518–30.PubMedCrossRef
25.
go back to reference McCoach CE, Blakely CM, Banks KC, et al. Clinical utility of cell-free DNA for the detection of ALK fusions and genomic mechanisms of ALK inhibitor resistance in non-small cell lung cancer. Clin Cancer Res. 2018;24(12):2758–70.PubMedPubMedCentralCrossRef McCoach CE, Blakely CM, Banks KC, et al. Clinical utility of cell-free DNA for the detection of ALK fusions and genomic mechanisms of ALK inhibitor resistance in non-small cell lung cancer. Clin Cancer Res. 2018;24(12):2758–70.PubMedPubMedCentralCrossRef
26.
go back to reference Thompson JC, Yee SS, Troxel AB, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22(23):5772–82.PubMedPubMedCentralCrossRef Thompson JC, Yee SS, Troxel AB, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22(23):5772–82.PubMedPubMedCentralCrossRef
27.
go back to reference Reungwetwattana T, Liang Y, Zhu V, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable. Lung Cancer. 2017;103:27–37.PubMedCrossRef Reungwetwattana T, Liang Y, Zhu V, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable. Lung Cancer. 2017;103:27–37.PubMedCrossRef
28.
go back to reference Schuler MH, Berardi R, Lim W-T, et al. Phase (Ph) I study of the safety and efficacy of the cMET inhibitor capmatinib (INC280) in patients (pts) with advanced cMET+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2016;34(15 Suppl):9067–9067.CrossRef Schuler MH, Berardi R, Lim W-T, et al. Phase (Ph) I study of the safety and efficacy of the cMET inhibitor capmatinib (INC280) in patients (pts) with advanced cMET+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2016;34(15 Suppl):9067–9067.CrossRef
29.
go back to reference Wolf J, Seto T, Han J-Y, et al. Capmatinib in MET Exon 14-mutated or MET-amplified non–small-cell lung cancer. N Engl J Med. 2020;383:944–57.PubMedCrossRef Wolf J, Seto T, Han J-Y, et al. Capmatinib in MET Exon 14-mutated or MET-amplified non–small-cell lung cancer. N Engl J Med. 2020;383:944–57.PubMedCrossRef
30.
go back to reference Garon EB, Heist RS, Seto T, et al. CT082 - Capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): Results from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with brain metastases (BM) [abstract]. Cancer Res. 2020;60 (16 Suppl): Abstract CT082. Garon EB, Heist RS, Seto T, et al. CT082 - Capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): Results from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with brain metastases (BM) [abstract]. Cancer Res. 2020;60 (16 Suppl): Abstract CT082.
31.
go back to reference Bladt F, Faden B, Friese-Hamim M, et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res. 2013;19(11):2941–51.PubMedCrossRef Bladt F, Faden B, Friese-Hamim M, et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res. 2013;19(11):2941–51.PubMedCrossRef
32.
go back to reference Falchook GS, Kurzrock R, Amin HM, et al. Efficacy, safety, biomarkers, and Phase II dose modeling in a Phase I trial of the oral selective c-Met inhibitor tepotinib (MSC2156119). J Clin Oncol. 2015;33(15 Suppl):2591–2591.CrossRef Falchook GS, Kurzrock R, Amin HM, et al. Efficacy, safety, biomarkers, and Phase II dose modeling in a Phase I trial of the oral selective c-Met inhibitor tepotinib (MSC2156119). J Clin Oncol. 2015;33(15 Suppl):2591–2591.CrossRef
33.
34.
go back to reference Lu S, Fang J, Li X, Cao L, Zhou J, Guo Q, Liang Z, Cheng Y, Jiang L, Yang N, Han Z, Shi J, Chen Y, Xu H, Zhang H, Chen G, Ma R, Sun S, Fan Y, Li J, Luo X, Wang L, Ren Y, Su W. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir Med. 2021; 21:S2213-2600(21)00084-9. https://doi.org/10.1016/S2213-2600(21)00084-9. Epub ahead of print. Lu S, Fang J, Li X, Cao L, Zhou J, Guo Q, Liang Z, Cheng Y, Jiang L, Yang N, Han Z, Shi J, Chen Y, Xu H, Zhang H, Chen G, Ma R, Sun S, Fan Y, Li J, Luo X, Wang L, Ren Y, Su W. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir Med. 2021; 21:S2213-2600(21)00084-9. https://​doi.​org/​10.​1016/​S2213-2600(21)00084-9. Epub ahead of print.
35.
go back to reference Han S, Fang J, Lu S, Wang L, Li J, Cheng M, Ren Y, Su W. Response and acquired resistance to savolitinib in a patient with pulmonary sarcomatoid carcinoma harboring MET exon 14 skipping mutation: a case report. Onco Targets Ther. 2019;12:7323–8.PubMedPubMedCentralCrossRef Han S, Fang J, Lu S, Wang L, Li J, Cheng M, Ren Y, Su W. Response and acquired resistance to savolitinib in a patient with pulmonary sarcomatoid carcinoma harboring MET exon 14 skipping mutation: a case report. Onco Targets Ther. 2019;12:7323–8.PubMedPubMedCentralCrossRef
36.
go back to reference Awad MM, Lee JK, Madison R, et al. Characterization of 1,387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanisms. J Clin Oncol. 2020;38(15 Suppl):9511–9511.CrossRef Awad MM, Lee JK, Madison R, et al. Characterization of 1,387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanisms. J Clin Oncol. 2020;38(15 Suppl):9511–9511.CrossRef
37.
go back to reference Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol; Published online 24 May 2019;mdz167. https://doi.org/10.1093/annonc/mdz167. Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol; Published online 24 May 2019;mdz167. https://​doi.​org/​10.​1093/​annonc/​mdz167.
38.
go back to reference Sabari JK, Leonardi GC, Shu CA, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29:2085–91.PubMedPubMedCentralCrossRef Sabari JK, Leonardi GC, Shu CA, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29:2085–91.PubMedPubMedCentralCrossRef
39.
go back to reference Mayenga M, Assié JB, Monnet I, et al. Durable responses to immunotherapy of non-small cell lung cancers harboring MET exon-14-skipping mutation: a series of 6 cases. Lung Cancer. 2020;150:21–5.PubMedCrossRef Mayenga M, Assié JB, Monnet I, et al. Durable responses to immunotherapy of non-small cell lung cancers harboring MET exon-14-skipping mutation: a series of 6 cases. Lung Cancer. 2020;150:21–5.PubMedCrossRef
40.
go back to reference Guisier F, Dubos-Arvis C, Viñas F, Doubre H, Ricordel C, Ropert S, Janicot H, Bernardi M, Fournel P, Lamy R, Pérol M, Dauba J, Gonzales G, Falchero L, Decroisette C, Assouline P, Chouaid C, Bylicki O. Efficacy and safety of Anti-PD-1 immunotherapy in patients with advanced NSCLC With BRAF, HER2, or MET mutations or RET translocation: GFPC 01–2018. J Thorac Oncol. 2020;15(4):628–36.PubMedCrossRef Guisier F, Dubos-Arvis C, Viñas F, Doubre H, Ricordel C, Ropert S, Janicot H, Bernardi M, Fournel P, Lamy R, Pérol M, Dauba J, Gonzales G, Falchero L, Decroisette C, Assouline P, Chouaid C, Bylicki O. Efficacy and safety of Anti-PD-1 immunotherapy in patients with advanced NSCLC With BRAF, HER2, or MET mutations or RET translocation: GFPC 01–2018. J Thorac Oncol. 2020;15(4):628–36.PubMedCrossRef
41.
go back to reference Recondo G, Bahall M, Awad MM, et al. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET Exon 14-mutant NSCLC. Clin Cancer Res. 2020;26(11):2615–25.PubMedCrossRef Recondo G, Bahall M, Awad MM, et al. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET Exon 14-mutant NSCLC. Clin Cancer Res. 2020;26(11):2615–25.PubMedCrossRef
42.
go back to reference Engstrom LD, Aranda R, Lee M, Christensen JG, et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models. Clin Cancer Res. 2017;23(21):6661–72.PubMedCrossRef Engstrom LD, Aranda R, Lee M, Christensen JG, et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models. Clin Cancer Res. 2017;23(21):6661–72.PubMedCrossRef
43.
go back to reference Drilon A, Clark JW, Weiss J, Ignatius Ou S-H, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47–51.PubMedCrossRefPubMedCentral Drilon A, Clark JW, Weiss J, Ignatius Ou S-H, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47–51.PubMedCrossRefPubMedCentral
44.
go back to reference Paik P, Drilon A, Ladanyi M, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.PubMedPubMedCentralCrossRef Paik P, Drilon A, Ladanyi M, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.PubMedPubMedCentralCrossRef
45.
go back to reference Wolf J, Seto T, Han J-Y, et al., Results of the GEOMETRY mono-1 phase II study for evaluation of the MET inhibitor capmatinib (INC280) in patients (pts) with METΔex14 mutated advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2018;29:viii741–viii742. Wolf J, Seto T, Han J-Y, et al., Results of the GEOMETRY mono-1 phase II study for evaluation of the MET inhibitor capmatinib (INC280) in patients (pts) with METΔex14 mutated advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2018;29:viii741–viii742.
46.
go back to reference Vijayan RSK, Peterson JR, Dunbrack RL Jr, Levy RM, et al. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem. 2015;58(1):466–79.PubMedCrossRef Vijayan RSK, Peterson JR, Dunbrack RL Jr, Levy RM, et al. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem. 2015;58(1):466–79.PubMedCrossRef
47.
go back to reference Bahcall M, Awad MM, Janne PA, et al. Amplification of wild-type KRAS imparts resistance to crizotinib in MET Exon 14 mutant non-small cell lung cancer. Clin Cancer Res. 2018;24(23):5963–76.PubMedPubMedCentralCrossRef Bahcall M, Awad MM, Janne PA, et al. Amplification of wild-type KRAS imparts resistance to crizotinib in MET Exon 14 mutant non-small cell lung cancer. Clin Cancer Res. 2018;24(23):5963–76.PubMedPubMedCentralCrossRef
48.
go back to reference Heist RS, Sequist LV, Borger D, et al. Acquired resistance to crizotinib in NSCLC with MET Exon 14 skipping. J Thorac Oncol. 2016;11(8):1242–5.PubMedCrossRef Heist RS, Sequist LV, Borger D, et al. Acquired resistance to crizotinib in NSCLC with MET Exon 14 skipping. J Thorac Oncol. 2016;11(8):1242–5.PubMedCrossRef
49.
go back to reference Fujino T, Kobayashi Y, Suda K, Mitsudomi T, et al. Sensitivity and resistance of MET Exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J Thorac Oncol. 2019;14(10):1753–65.PubMedCrossRef Fujino T, Kobayashi Y, Suda K, Mitsudomi T, et al. Sensitivity and resistance of MET Exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J Thorac Oncol. 2019;14(10):1753–65.PubMedCrossRef
50.
go back to reference Suzawa K, Offin M, Somwar R, et al. Activation of KRAS mediates resistance to targeted therapy in MET Exon 14-mutant non-small cell lung cancer. Clin Cancer Res. 2019;25(4):1248–60.PubMedCrossRef Suzawa K, Offin M, Somwar R, et al. Activation of KRAS mediates resistance to targeted therapy in MET Exon 14-mutant non-small cell lung cancer. Clin Cancer Res. 2019;25(4):1248–60.PubMedCrossRef
51.
go back to reference Guo R, Offin M, Drion A, et al. MET Exon 14-altered lung cancers and MET inhibitor resistance. Clin Cancer Res. 2021;27(3):799–806.PubMedCrossRef Guo R, Offin M, Drion A, et al. MET Exon 14-altered lung cancers and MET inhibitor resistance. Clin Cancer Res. 2021;27(3):799–806.PubMedCrossRef
52.
go back to reference McDermott U, Pusapati RV, Settleman J, et al. Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res. 2010;70(4):1625–34.PubMedPubMedCentralCrossRef McDermott U, Pusapati RV, Settleman J, et al. Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res. 2010;70(4):1625–34.PubMedPubMedCentralCrossRef
55.
go back to reference Vuong HG, Ho ATN, Altibi AMA, et al. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—a systematic review and meta-analysis. Lung Cancer. 2018;123:76–82.PubMedCrossRef Vuong HG, Ho ATN, Altibi AMA, et al. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—a systematic review and meta-analysis. Lung Cancer. 2018;123:76–82.PubMedCrossRef
56.
go back to reference Vansteenkiste JF, Van De Kerkhove C, Wauters E, Van Mol P. Capmatinib for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19(8):659–71.PubMedCrossRef Vansteenkiste JF, Van De Kerkhove C, Wauters E, Van Mol P. Capmatinib for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19(8):659–71.PubMedCrossRef
57.
go back to reference Wolf J, Seto T, Han J, et al. Capmatinib in METex14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase II GEOMETRY mono-1 study. J Clin Oncol. 2019;37(15 Suppl):9004–9004.CrossRef Wolf J, Seto T, Han J, et al. Capmatinib in METex14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase II GEOMETRY mono-1 study. J Clin Oncol. 2019;37(15 Suppl):9004–9004.CrossRef
58.
go back to reference Ou SI, et al. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET Exon 14 skipping. J Thorac Oncol. 2017;12(1):137–40.PubMedCrossRef Ou SI, et al. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET Exon 14 skipping. J Thorac Oncol. 2017;12(1):137–40.PubMedCrossRef
59.
go back to reference Li A, et al. Acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer. Clin Cancer Res. 2017;23(16):4929–37.PubMedCrossRef Li A, et al. Acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer. Clin Cancer Res. 2017;23(16):4929–37.PubMedCrossRef
60.
go back to reference Tiedt R, Degenkolbe E, Furet P, et al. A Drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res. 2011;71(15):5255–64.PubMedCrossRef Tiedt R, Degenkolbe E, Furet P, et al. A Drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res. 2011;71(15):5255–64.PubMedCrossRef
Metadata
Title
Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer
Authors
Leylah M. Drusbosky
Richa Dawar
Estelamari Rodriguez
Chukwuemeka V. Ikpeazu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01138-7

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine