Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2018

01-11-2018 | Epidemiology

NRF1 motif sequence-enriched genes involved in ER/PR −ve HER2 +ve breast cancer signaling pathways

Authors: Jairo Ramos, Jayanta Das, Quentin Felty, Changwon Yoo, Robert Poppiti, Donna Murrell, Paula J. Foster, Deodutta Roy

Published in: Breast Cancer Research and Treatment | Issue 2/2018

Login to get access

Abstract

Nuclear respiratory factor 1 (NRF1) transcription factor has recently been shown to control breast cancer progression. However, mechanistic aspects by which NRF1 may contribute to susceptibility to different breast tumor subtypes are still not fully understood. Since transcriptional control of NRF1 seems to be dependent on epidermal growth factor receptor signaling, herein, we investigated the role of NRF1 in estrogen receptor/progesterone receptor negative, but human epidermal growth factor receptor 2-positive (ER/PR −ve HER2 +ve) breast cancer. We found that both mRNA and protein levels of NRF1 and its transcriptional activity were significantly higher in ER/PR −ve HER2 +ve breast cancer samples compared to normal breast tissues. This was consistent with our observation of higher NRF1 protein expression in the experimental model of HER2+ breast cancer brain metastasis. To identify network-based pathways involved in the susceptibility to the ER/PR −ve HER2 +ve breast cancer subtype, the NRF1 transcriptional regulatory genome-wide landscape was analyzed using the approach consisting of a systematic integration of ChIP DNA-seq, RNA-Microarray, NRF1 protein-DNA motif binding, signal pathway analysis, and Bayesian machine learning. Our findings show that a high percentage of known HER2+ breast cancer susceptibility genes, including EGFR, IGFR, and E2F1, are under transcriptional control of NRF1. Promoters of several genes from the KEGG HER2+ breast cancer pathway and 11 signaling pathways linked to 6 hallmarks of cancer contain the NRF1 motif. By pathway analysis, key breast cancer hallmark genes of epithelial-mesenchymal transition, stemness, cell apoptosis, cell cycle regulation, chromosomal integrity, and DNA damage/repair were highly enriched with NRF1 motifs. In addition, we found using Bayesian network-based machine learning that 30 NRF1 motif-enriched genes including growth factor receptors—FGFR1, IGF1R; E2Fs transcription factor family—E2F1, E2F3; MAPK pathway—SHC2, GRB2, MAPK1; PI3K-AKT-mTOR signaling pathway—PIK3CD, PIK3R1, PIK3R3, RPS6KB2; WNT signaling pathway—WNT7B, DLV1, DLV2, GSK3B, NRF1, and DDB2, known for its role in DNA repair and involvement in early events associated with metastatic progression of breast cancer cells, were associated with HER2-amplified breast cancer. Machine learning search further revealed that the likelihood of HER2-positive breast cancer is almost 100% in a patient with the high NRF1 expression combined with expression patterns of high E2F3, GSK3B, and MAPK1, low or no change in E2F1 and FGFR1, and high or no change in PIK3R3. In summary, our findings suggest novel roles of NRF1 and its regulatory networks in susceptibility to the ER/PR −ve HER2 +ve aggressive breast cancer subtype. Clinical confirmation of our machine learned Bayesian networks will have significant impact on our understanding of the role of NRF1 as a valuable biomarker for breast cancer diagnosis and prognosis as well as provide strong rationale for future studies to develop NRF1 signaling-based therapeutics to target HER2+ breast cancer.
Literature
1.
go back to reference Andrechek ER (2015) HER2/Neu tumorigenesis and metastasis is regulated by E2F activator transcription factors. Oncogene 34(2):217–225CrossRef Andrechek ER (2015) HER2/Neu tumorigenesis and metastasis is regulated by E2F activator transcription factors. Oncogene 34(2):217–225CrossRef
2.
go back to reference Barbieux C, Bacharouche J, Soussen C, Hupont S, Razafitianamaharavo A, Klotz R et al (2016) DDB2 (damaged-DNA binding 2) protein: A new modulator of nanomechanical properties and cell adhesion of breast cancer cells. Nanoscale 8(9):5268–5279CrossRef Barbieux C, Bacharouche J, Soussen C, Hupont S, Razafitianamaharavo A, Klotz R et al (2016) DDB2 (damaged-DNA binding 2) protein: A new modulator of nanomechanical properties and cell adhesion of breast cancer cells. Nanoscale 8(9):5268–5279CrossRef
3.
go back to reference Benner C, Konovalov S, Mackintosh C, Hutt KR, Stunnenberg R, Garcia-Bassets I (2013) Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions. PLoS Genetics, 9(11), e1003906CrossRef Benner C, Konovalov S, Mackintosh C, Hutt KR, Stunnenberg R, Garcia-Bassets I (2013) Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions. PLoS Genetics, 9(11), e1003906CrossRef
4.
go back to reference Campoy EM, Laurito SR, Branham MT, Urrutia G, Mathison A, Gago F et al (2016) Asymmetric cancer hallmarks in breast tumors on different sides of the body. PLoS ONE, 11(7), e0157416CrossRef Campoy EM, Laurito SR, Branham MT, Urrutia G, Mathison A, Gago F et al (2016) Asymmetric cancer hallmarks in breast tumors on different sides of the body. PLoS ONE, 11(7), e0157416CrossRef
5.
go back to reference Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRef Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRef
6.
go back to reference Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schubeler D (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528(7583):575–579CrossRef Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schubeler D (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528(7583):575–579CrossRef
7.
go back to reference ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRef ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRef
8.
go back to reference Ertel A, Tsirigos A, Whitaker-Menezes D, Birbe RC, Pavlides S, Martinez-Outschoorn UE et al (2012) Is cancer a metabolic rebellion against host aging? in the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 11(2):253–263CrossRef Ertel A, Tsirigos A, Whitaker-Menezes D, Birbe RC, Pavlides S, Martinez-Outschoorn UE et al (2012) Is cancer a metabolic rebellion against host aging? in the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 11(2):253–263CrossRef
9.
go back to reference Falco MM, Bleda M, Carbonell-Caballero J, Dopazo J (2016) The pan-cancer pathological regulatory landscape. Sci Rep 6:39709CrossRef Falco MM, Bleda M, Carbonell-Caballero J, Dopazo J (2016) The pan-cancer pathological regulatory landscape. Sci Rep 6:39709CrossRef
10.
go back to reference Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620CrossRef Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620CrossRef
11.
go back to reference Gao W, Wu M, Wang N, Zhang Y, Hua J, Tang G et al (2018) Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 predicts a poor clinical outcome of breast cancer. Oncol Lett 15(2):1449–1458PubMed Gao W, Wu M, Wang N, Zhang Y, Hua J, Tang G et al (2018) Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 predicts a poor clinical outcome of breast cancer. Oncol Lett 15(2):1449–1458PubMed
12.
go back to reference Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100(15):1092–1103CrossRef Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100(15):1092–1103CrossRef
13.
go back to reference Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRef Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRef
14.
go back to reference Henjes F, Bender C, von der Heyde S, Braun L, Mannsperger HA, Schmidt C et al (2012) Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis, 1:e16CrossRef Henjes F, Bender C, von der Heyde S, Braun L, Mannsperger HA, Schmidt C et al (2012) Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis, 1:e16CrossRef
15.
go back to reference Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H (2010) Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 21(2):255–262CrossRef Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H (2010) Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 21(2):255–262CrossRef
16.
go back to reference Kunkle BW, Yoo C, Roy D (2013) Reverse engineering of modified genes by bayesian network analysis defines molecular determinants critical to the development of glioblastoma. PLoS ONE 8(5):e64140CrossRef Kunkle BW, Yoo C, Roy D (2013) Reverse engineering of modified genes by bayesian network analysis defines molecular determinants critical to the development of glioblastoma. PLoS ONE 8(5):e64140CrossRef
17.
go back to reference Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831CrossRef Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831CrossRef
18.
go back to reference Lavigne MD, Vatsellas G, Polyzos A, Mantouvalou E, Sianidis G, Maraziotis I et al (2015) Composite macroH2A/NRF-1 nucleosomes suppress noise and generate robustness in gene expression. Cell Rep 11(7):1090–1101CrossRef Lavigne MD, Vatsellas G, Polyzos A, Mantouvalou E, Sianidis G, Maraziotis I et al (2015) Composite macroH2A/NRF-1 nucleosomes suppress noise and generate robustness in gene expression. Cell Rep 11(7):1090–1101CrossRef
19.
go back to reference Le TD, Liu L, Liu B, Tsykin A, Goodall GJ, Satou K et al (2013) Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinform 14:92CrossRef Le TD, Liu L, Liu B, Tsykin A, Goodall GJ, Satou K et al (2013) Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinform 14:92CrossRef
20.
go back to reference Lee M, Oprea-Ilies G, Saavedra HI (2015) Silencing of E2F3 suppresses tumor growth of HER2+ breast cancer cells by restricting mitosis. Oncotarget 6(35):37316–37334PubMedPubMedCentral Lee M, Oprea-Ilies G, Saavedra HI (2015) Silencing of E2F3 suppresses tumor growth of HER2+ breast cancer cells by restricting mitosis. Oncotarget 6(35):37316–37334PubMedPubMedCentral
21.
go back to reference Lee MY, Moreno CS, Saavedra HI (2014) E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol 34(14):2581–2599CrossRef Lee MY, Moreno CS, Saavedra HI (2014) E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol 34(14):2581–2599CrossRef
22.
go back to reference Murrell DH, Hamilton AM, Mallett CL, van Gorkum R, Chambers AF, Foster PJ (2015) Understanding heterogeneity and permeability of brain metastases in murine models of HER2-positive breast cancer through magnetic resonance imaging: Implications for detection and therapy. Transl Oncol 8(3):176–184CrossRef Murrell DH, Hamilton AM, Mallett CL, van Gorkum R, Chambers AF, Foster PJ (2015) Understanding heterogeneity and permeability of brain metastases in murine models of HER2-positive breast cancer through magnetic resonance imaging: Implications for detection and therapy. Transl Oncol 8(3):176–184CrossRef
23.
go back to reference Niida A, Smith AD, Imoto S, Tsutsumi S, Aburatani H, Zhang MQ et al (2008) Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC Bioinform 9:404CrossRef Niida A, Smith AD, Imoto S, Tsutsumi S, Aburatani H, Zhang MQ et al (2008) Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC Bioinform 9:404CrossRef
24.
go back to reference Okoh V, Deoraj A, Roy D (2011) Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophysica Acta 1815(1):115–133 Okoh V, Deoraj A, Roy D (2011) Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophysica Acta 1815(1):115–133
25.
go back to reference Okoh VO, Garba NA, Penney RB, Das J, Deoraj A, Singh KP et al (2015) Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells. Br J Cancer 112(10):1687–1702CrossRef Okoh VO, Garba NA, Penney RB, Das J, Deoraj A, Singh KP et al (2015) Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells. Br J Cancer 112(10):1687–1702CrossRef
26.
go back to reference Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281(1):324–333CrossRef Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281(1):324–333CrossRef
28.
go back to reference Roy D, Tamuli R (2008) NRF1 (nuclear respiratory factor 1) atlas of genetics and cytogenetics in oncology and haematolology, 02/13/2018 Roy D, Tamuli R (2008) NRF1 (nuclear respiratory factor 1) atlas of genetics and cytogenetics in oncology and haematolology, 02/13/2018
29.
go back to reference Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97(4):673–683CrossRef Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97(4):673–683CrossRef
30.
go back to reference Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88(2):611–638CrossRef Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88(2):611–638CrossRef
31.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRef
32.
go back to reference Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP et al (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotechnol 32(2):171–178CrossRef Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP et al (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotechnol 32(2):171–178CrossRef
34.
go back to reference Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874CrossRef Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874CrossRef
35.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucl Acids Res 43(Database issue):D447–D452CrossRef Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucl Acids Res 43(Database issue):D447–D452CrossRef
36.
go back to reference von der Heyde S, Wagner S, Czerny A, Nietert M, Ludewig F, Salinas-Riester G et al (2015) mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer. PLoS ONE, 10(2):e0117818CrossRef von der Heyde S, Wagner S, Czerny A, Nietert M, Ludewig F, Salinas-Riester G et al (2015) mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer. PLoS ONE, 10(2):e0117818CrossRef
37.
go back to reference Weaver Z, Difilippantonio S, Carretero J, Martin PL, El Meskini R, Iacovelli AJ et al (2012) Temporal molecular and biological assessment of an erlotinib-resistant lung adenocarcinoma model reveals markers of tumor progression and treatment response. Cancer Res 72(22):5921–5933CrossRef Weaver Z, Difilippantonio S, Carretero J, Martin PL, El Meskini R, Iacovelli AJ et al (2012) Temporal molecular and biological assessment of an erlotinib-resistant lung adenocarcinoma model reveals markers of tumor progression and treatment response. Cancer Res 72(22):5921–5933CrossRef
38.
go back to reference Wu X, Baig A, Kasymjanova G, Kafi K, Holcroft C, Mekouar H et al (2016) Pattern of local recurrence and distant metastasis in breast cancer by molecular subtype. Cureus 8(12):e924PubMedPubMedCentral Wu X, Baig A, Kasymjanova G, Kafi K, Holcroft C, Mekouar H et al (2016) Pattern of local recurrence and distant metastasis in breast cancer by molecular subtype. Cureus 8(12):e924PubMedPubMedCentral
39.
go back to reference Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA, 3rd et al (2014) Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962–2973CrossRef Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA, 3rd et al (2014) Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962–2973CrossRef
Metadata
Title
NRF1 motif sequence-enriched genes involved in ER/PR −ve HER2 +ve breast cancer signaling pathways
Authors
Jairo Ramos
Jayanta Das
Quentin Felty
Changwon Yoo
Robert Poppiti
Donna Murrell
Paula J. Foster
Deodutta Roy
Publication date
01-11-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-018-4905-9

Other articles of this Issue 2/2018

Breast Cancer Research and Treatment 2/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine