Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Research

Novel type of references for weight aligned for onset of puberty – using the QEPS growth model

Authors: Kerstin Albertsson-Wikland, Aimon Niklasson, Lars Gelander, Anton Holmgren, Andreas F. M. Nierop

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Growth references are traditionally constructed relative to chronological age, despite inter-individual variations in pubertal timing. A new type of height reference was recently developed allowing growth to be aligned based on onset of pubertal height growth. We here aim to develop a corresponding reference for pubertal weight.

Methods

To model QEPS-weight, 3595 subjects (1779 girls) from GrowUp1974Gothenburg and GrowUp1990Gothenburg were used. The QEPS-height-model was transformed to a corresponding QEPS-weight-model; thereafter, QEPS-weight was modified by an individual, constitutional weight-height-factor. Longitudinal weight and length/height measurements from 1418 individuals (698 girls) from GrowUp1990Gothenburg were then used to create weight references aligned for height at pubertal onset (the age at 5% of P-function growth, AgeP5). GrowUp1974Gothenburg subgroups based on pubertal timing, stature at pubertal onset, and childhood body composition were assessed using the references.

Results

References (median, SDS) for total weight (QEPS-functions), weight specific to puberty (P-function), and weight gain in the absence of specific pubertal growth (basic weight, QES-functions), allowing alignment of individual growth based on age at pubertal onset. For both sexes, basic weight was greater than average for late maturing, tall and high-BMI subgroups. The P-function-related weight was greater than average in short and lower than average in tall children, in those with high BMI, and in girls but not boys with low BMI.

Conclusions

New pubertal weight references allow individual variations in pubertal timing to be taken into consideration when evaluating growth. When used together with the comparable pubertal height reference, this will improve growth monitoring in clinical practice for identifying abnormal growth and serve as a valuable research tool providing insight into human growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO Multicentre Growth Reference Study G, de Onis M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;95:76–85.CrossRef WHO Multicentre Growth Reference Study G, de Onis M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;95:76–85.CrossRef
2.
go back to reference Sankilampi U, Saari A, Laine T, Miettinen PJ, Dunkel L. Use of electronic health records for automated screening of growth disorders in primary care. JAMA. 2013;310:1071–2.CrossRef Sankilampi U, Saari A, Laine T, Miettinen PJ, Dunkel L. Use of electronic health records for automated screening of growth disorders in primary care. JAMA. 2013;310:1071–2.CrossRef
3.
go back to reference Cole TJ. The development of growth references and growth charts. Ann Hum Biol. 2012;39:382–94.CrossRef Cole TJ. The development of growth references and growth charts. Ann Hum Biol. 2012;39:382–94.CrossRef
4.
go back to reference Holmgren A, Niklasson A, Aronson AS, Sjoberg A, Lissner L, Albertsson-Wikland K. Nordic populations are still getting taller - secular changes in height from the 20th to 21st century. Acta Paediatr. 2019;108:1311–20.CrossRef Holmgren A, Niklasson A, Aronson AS, Sjoberg A, Lissner L, Albertsson-Wikland K. Nordic populations are still getting taller - secular changes in height from the 20th to 21st century. Acta Paediatr. 2019;108:1311–20.CrossRef
5.
go back to reference Albertsson-Wikland K, Niklasson A, Gelander L, Holmgren A, Sjoberg A, Aronson AS, et al. Swedish references for weight, weight-for-height and body mass index: the GrowUp 1990 Gothenburg study. Acta Paediatr. 2021;110:537–48.CrossRef Albertsson-Wikland K, Niklasson A, Gelander L, Holmgren A, Sjoberg A, Aronson AS, et al. Swedish references for weight, weight-for-height and body mass index: the GrowUp 1990 Gothenburg study. Acta Paediatr. 2021;110:537–48.CrossRef
6.
go back to reference Tanner JM, Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch Dis Child. 1966;41:454–71.CrossRef Tanner JM, Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch Dis Child. 1966;41:454–71.CrossRef
7.
8.
go back to reference Karlberg J, Fryer JG, Engstrom I, Karlberg P. Analysis of linear growth using a mathematical model. II. From 3 to 21 years of age. Acta Paediatr Scand. 1987;337:12–29.CrossRef Karlberg J, Fryer JG, Engstrom I, Karlberg P. Analysis of linear growth using a mathematical model. II. From 3 to 21 years of age. Acta Paediatr Scand. 1987;337:12–29.CrossRef
9.
go back to reference Albertsson-Wikland K, Luo ZC, Niklasson A, Karlberg J. Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr. 2002;91:739–54.CrossRef Albertsson-Wikland K, Luo ZC, Niklasson A, Karlberg J. Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr. 2002;91:739–54.CrossRef
10.
go back to reference Gelander L, Hagenäs L, Albertsson-Wikland K. Tillväxtkurvan i skolhälsovården. Tillväxt och kroppslig mognad 6–18 år. Manual och Lilla tillväxtskolan. Stockholm: Kommentus; 2003. Gelander L, Hagenäs L, Albertsson-Wikland K. Tillväxtkurvan i skolhälsovården. Tillväxt och kroppslig mognad 6–18 år. Manual och Lilla tillväxtskolan. Stockholm: Kommentus; 2003.
11.
go back to reference Nierop AF, Niklasson A, Holmgren A, Gelander L, Rosberg S, Albertsson-Wikland K. Modelling individual longitudinal human growth from fetal to adult life - QEPS I. J Theor Biol. 2016;406:143–65.CrossRef Nierop AF, Niklasson A, Holmgren A, Gelander L, Rosberg S, Albertsson-Wikland K. Modelling individual longitudinal human growth from fetal to adult life - QEPS I. J Theor Biol. 2016;406:143–65.CrossRef
12.
go back to reference Holmgren A, Niklasson A, Gelander L, Aronson AS, Nierop AFM, Albertsson-Wikland K. Insight into human pubertal growth by applying the QEPS growth model. BMC Pediatr. 2017;17:107.CrossRef Holmgren A, Niklasson A, Gelander L, Aronson AS, Nierop AFM, Albertsson-Wikland K. Insight into human pubertal growth by applying the QEPS growth model. BMC Pediatr. 2017;17:107.CrossRef
13.
go back to reference Albertsson-Wikland K, Niklasson A, Holmgren A, Gelander L, Nierop AFM. A new Swedish reference for total and prepubertal height. Acta Paediatr. 2020;109:754–63.CrossRef Albertsson-Wikland K, Niklasson A, Holmgren A, Gelander L, Nierop AFM. A new Swedish reference for total and prepubertal height. Acta Paediatr. 2020;109:754–63.CrossRef
14.
go back to reference Albertsson-Wikland KG, Niklasson A, Holmgren A, Gelander L, Nierop AFM. A new type of pubertal height reference based on growth aligned for onset of pubertal growth. J Pediatr Endocrinol Metab. 2020;33:1173–82.CrossRef Albertsson-Wikland KG, Niklasson A, Holmgren A, Gelander L, Nierop AFM. A new type of pubertal height reference based on growth aligned for onset of pubertal growth. J Pediatr Endocrinol Metab. 2020;33:1173–82.CrossRef
15.
go back to reference Sjöberg A, Barrenäs ML, Brann E, Chaplin JE, Dahlgren J, Mårild S, et al. Body size and lifestyle in an urban population entering adulthood: the 'Grow up Gothenburg' study. Acta Paediatr. 2012;101:964–72.CrossRef Sjöberg A, Barrenäs ML, Brann E, Chaplin JE, Dahlgren J, Mårild S, et al. Body size and lifestyle in an urban population entering adulthood: the 'Grow up Gothenburg' study. Acta Paediatr. 2012;101:964–72.CrossRef
16.
go back to reference Holmgren A, Niklasson A, Nierop AFM, Gelander L, Aronson AS, Sjoberg A, et al. Estimating secular changes in longitudinal growth patterns underlying adult height with the QEPS model: the grow up Gothenburg cohorts. Pediatr Res. 2018;84:41–9.CrossRef Holmgren A, Niklasson A, Nierop AFM, Gelander L, Aronson AS, Sjoberg A, et al. Estimating secular changes in longitudinal growth patterns underlying adult height with the QEPS model: the grow up Gothenburg cohorts. Pediatr Res. 2018;84:41–9.CrossRef
17.
go back to reference Backman G. Gewichtswachstum des Mannes. Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen. 1940;140:285–314.CrossRef Backman G. Gewichtswachstum des Mannes. Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen. 1940;140:285–314.CrossRef
18.
go back to reference Vizmanos B, Marti-Henneberg C. Puberty begins with a characteristic subcutaneous body fat mass in each sex. Eur J Clin Nutr. 2000;54:203–8.CrossRef Vizmanos B, Marti-Henneberg C. Puberty begins with a characteristic subcutaneous body fat mass in each sex. Eur J Clin Nutr. 2000;54:203–8.CrossRef
19.
go back to reference Hochberg Z, Albertsson-Wikland K. Evo-Devo of infantile and childhood growth. Pediatr Res. 2008;64:2–7.CrossRef Hochberg Z, Albertsson-Wikland K. Evo-Devo of infantile and childhood growth. Pediatr Res. 2008;64:2–7.CrossRef
20.
go back to reference Hochberg Z. Evo-Devo of child growth: treatise on child growth and human evolution. 1st ed. Hobocken: Wiley-Blackwell, Publishers; 2012. Hochberg Z. Evo-Devo of child growth: treatise on child growth and human evolution. 1st ed. Hobocken: Wiley-Blackwell, Publishers; 2012.
21.
go back to reference Holmgren A, Niklasson A, Nierop AF, Gelander L, Aronson AS, Sjoberg A, et al. Pubertal height gain is inversely related to peak BMI in childhood. Pediatr Res. 2017;81:448–54.CrossRef Holmgren A, Niklasson A, Nierop AF, Gelander L, Aronson AS, Sjoberg A, et al. Pubertal height gain is inversely related to peak BMI in childhood. Pediatr Res. 2017;81:448–54.CrossRef
22.
go back to reference Beath KJ. Infant growth modelling using a shape invariant model with random effects. Stat Med. 2007;26:2547–64.CrossRef Beath KJ. Infant growth modelling using a shape invariant model with random effects. Stat Med. 2007;26:2547–64.CrossRef
23.
go back to reference Beath KJ. Infant growth modelling and assessment of growth. In: Preedy VR, editor. Handbook of growth and growth monitoring in health and disease. New York: Springer; 2012. Beath KJ. Infant growth modelling and assessment of growth. In: Preedy VR, editor. Handbook of growth and growth monitoring in health and disease. New York: Springer; 2012.
24.
go back to reference Ahmadi S, Bodeau-Livinec F, Zoumenou R, Garcia A, Courtin D, Alao J, et al. Comparison of growth models to describe growth from birth to 6 years in a Beninese cohort of children with repeated measurements. BMJ Open. 2020;10:e035785.CrossRef Ahmadi S, Bodeau-Livinec F, Zoumenou R, Garcia A, Courtin D, Alao J, et al. Comparison of growth models to describe growth from birth to 6 years in a Beninese cohort of children with repeated measurements. BMJ Open. 2020;10:e035785.CrossRef
25.
go back to reference Botton J, Scherdel P, Regnault N, Heude B, Charles MA, Group EM-CCS. Postnatal weight and height growth modeling and prediction of body mass index as a function of time for the study of growth determinants. Ann Nutr Metab. 2014;65:156–66.CrossRef Botton J, Scherdel P, Regnault N, Heude B, Charles MA, Group EM-CCS. Postnatal weight and height growth modeling and prediction of body mass index as a function of time for the study of growth determinants. Ann Nutr Metab. 2014;65:156–66.CrossRef
26.
go back to reference Rahmandad H. Human growth and body weight dynamics: an integrative systems model. PLoS One. 2014;9:e114609.CrossRef Rahmandad H. Human growth and body weight dynamics: an integrative systems model. PLoS One. 2014;9:e114609.CrossRef
27.
go back to reference Koletzko B, Brands B, Poston L, Godfrey K, Demmelmair H, Early Nutrition P. Early nutrition programming of long-term health. Proc Nutr Soc. 2012;71:371–8.CrossRef Koletzko B, Brands B, Poston L, Godfrey K, Demmelmair H, Early Nutrition P. Early nutrition programming of long-term health. Proc Nutr Soc. 2012;71:371–8.CrossRef
28.
go back to reference Fu Q, McKnight RA, Yu X, Wang L, Callaway CW, Lane RH. Uteroplacental insufficiency induces site-specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver. Physiol Genomics. 2004;20:108–16.CrossRef Fu Q, McKnight RA, Yu X, Wang L, Callaway CW, Lane RH. Uteroplacental insufficiency induces site-specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver. Physiol Genomics. 2004;20:108–16.CrossRef
29.
go back to reference Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1023–9.CrossRef Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1023–9.CrossRef
30.
go back to reference Zinkhan EK, Fu Q, Wang Y, Yu X, Callaway CW, Segar JL, et al. Maternal hyperglycemia disrupts histone 3 lysine 36 Trimethylation of the IGF-1 gene. Journal of nutrition and metabolism. 2012;2012:930364.CrossRef Zinkhan EK, Fu Q, Wang Y, Yu X, Callaway CW, Segar JL, et al. Maternal hyperglycemia disrupts histone 3 lysine 36 Trimethylation of the IGF-1 gene. Journal of nutrition and metabolism. 2012;2012:930364.CrossRef
31.
go back to reference Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82:485–91.CrossRef Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82:485–91.CrossRef
32.
go back to reference Barker DJ, Osmond C, Kajantie E, Eriksson JG. Growth and chronic disease: findings in the Helsinki birth cohort. Ann Hum Biol. 2009;36:445–58.CrossRef Barker DJ, Osmond C, Kajantie E, Eriksson JG. Growth and chronic disease: findings in the Helsinki birth cohort. Ann Hum Biol. 2009;36:445–58.CrossRef
33.
go back to reference Eriksson JG, Forsen TJ, Kajantie E, Osmond C, Barker DJ. Childhood growth and hypertension in later life. Hypertension. 2007;49:1415–21.CrossRef Eriksson JG, Forsen TJ, Kajantie E, Osmond C, Barker DJ. Childhood growth and hypertension in later life. Hypertension. 2007;49:1415–21.CrossRef
34.
go back to reference Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974-75. J Epidemiol Community Health. 1978;32:34–7.CrossRef Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974-75. J Epidemiol Community Health. 1978;32:34–7.CrossRef
35.
go back to reference Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353:1802–9.CrossRef Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353:1802–9.CrossRef
Metadata
Title
Novel type of references for weight aligned for onset of puberty – using the QEPS growth model
Authors
Kerstin Albertsson-Wikland
Aimon Niklasson
Lars Gelander
Anton Holmgren
Andreas F. M. Nierop
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02954-z

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue