Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 2/2011

Open Access 01-06-2011 | Article

Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism

Authors: Veronica J. Vieland, Joachim Hallmayer, Yungui Huang, Alistair T. Pagnamenta, Dalila Pinto, Hameed Khan, Anthony P. Monaco, Andrew D. Paterson, Stephen W. Scherer, James S. Sutcliffe, Peter Szatmari, The Autism Genome Project (AGP)

Published in: Journal of Neurodevelopmental Disorders | Issue 2/2011

Login to get access

Abstract

The Autism Genome Project has assembled two large datasets originally designed for linkage analysis and genome-wide association analysis, respectively: 1,069 multiplex families genotyped on the Affymetrix 10 K platform, and 1,129 autism trios genotyped on the Illumina 1 M platform. We set out to exploit this unique pair of resources by analyzing the combined data with a novel statistical method, based on the PPL statistical framework, simultaneously searching for linkage and association to loci involved in autism spectrum disorders (ASD). Our analysis also allowed for potential differences in genetic architecture for ASD in the presence or absence of lower IQ, an important clinical indicator of ASD subtypes. We found strong evidence of multiple linked loci; however, association evidence implicating specific genes was low even under the linkage peaks. Distinct loci were found in the lower IQ families, and these families showed stronger and more numerous linkage peaks, while the normal IQ group yielded the strongest association evidence. It appears that presence/absence of lower IQ (LIQ) demarcates more genetically homogeneous subgroups of ASD patients, with not just different sets of loci acting in the two groups, but possibly distinct genetic architecture between them, such that the LIQ group involves more major gene effects (amenable to linkage mapping), while the normal IQ group potentially involves more common alleles with lower penetrances. The possibility of distinct genetic architecture across subtypes of ASD has implications for further research and perhaps for research approaches to other complex disorders as well.
Literature
go back to reference Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30(1):97–101.CrossRefPubMed Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30(1):97–101.CrossRefPubMed
go back to reference Allen DA, Steinberg M, Dunn M, Fein D, Feinstein C, Waterhouse L, et al. Autistic disorder versus other pervasive developmental disorders in young children: same or different? Eur Child Adolesc Psychiatry. 2001;10(1):67–78.CrossRefPubMed Allen DA, Steinberg M, Dunn M, Fein D, Feinstein C, Waterhouse L, et al. Autistic disorder versus other pervasive developmental disorders in young children: same or different? Eur Child Adolesc Psychiatry. 2001;10(1):67–78.CrossRefPubMed
go back to reference Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjman S, Baulac M, Lechat P, et al. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry. 2008;64(7):577–82.CrossRefPubMed Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjman S, Baulac M, Lechat P, et al. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry. 2008;64(7):577–82.CrossRefPubMed
go back to reference Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19(20):4072–82.CrossRefPubMedCentralPubMed Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19(20):4072–82.CrossRefPubMedCentralPubMed
go back to reference Bijlsma EK, Gijsbers AC, Schuurs-Hoeijmakers JH, van Haeringen A, van de Putte DE Fransen, Anderlid BM, et al. Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009;52(2–3):77–87.CrossRefPubMed Bijlsma EK, Gijsbers AC, Schuurs-Hoeijmakers JH, van Haeringen A, van de Putte DE Fransen, Anderlid BM, et al. Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009;52(2–3):77–87.CrossRefPubMed
go back to reference Bureau A, Labbe A, Croteau J, Merette C. Using disease symptoms to improve detection of linkage under genetic heterogeneity. Genet Epidemiol. 2008;32(5):476–86.CrossRefPubMed Bureau A, Labbe A, Croteau J, Merette C. Using disease symptoms to improve detection of linkage under genetic heterogeneity. Genet Epidemiol. 2008;32(5):476–86.CrossRefPubMed
go back to reference Elston RC, Lange K. The prior probability of autosomal linkage. Ann Hum Genet. 1975;38(3):341–50.CrossRefPubMed Elston RC, Lange K. The prior probability of autosomal linkage. Ann Hum Genet. 1975;38(3):341–50.CrossRefPubMed
go back to reference Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V, et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry. 2009;66(9):947–56.CrossRefPubMedCentralPubMed Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V, et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry. 2009;66(9):947–56.CrossRefPubMedCentralPubMed
go back to reference Huang J, Vieland VJ. Comparison of ‘model-free’ and ‘model-based’ linkage statistics in the presence of locus heterogeneity: single data set and multiple data set applications. Hum Hered. 2001;51(4):217–25. PMID: 11287743.CrossRefPubMed Huang J, Vieland VJ. Comparison of ‘model-free’ and ‘model-based’ linkage statistics in the presence of locus heterogeneity: single data set and multiple data set applications. Hum Hered. 2001;51(4):217–25. PMID: 11287743.CrossRefPubMed
go back to reference Huang Y, Vieland VJ. Association Statistics under the PPL Framework. Genetic Epidem. 2010;34:835–45. Huang Y, Vieland VJ. Association Statistics under the PPL Framework. Genetic Epidem. 2010;34:835–45.
go back to reference Huang Y, Segre A, O’Connell J, Wang H, Vieland VJ. KELVIN: a 2nd generation distributed multiprocessor linkage and linkage disequilibrium analysis program. American Society of Human Genetics; 2006; ASHG 56th annual meeting. Huang Y, Segre A, O’Connell J, Wang H, Vieland VJ. KELVIN: a 2nd generation distributed multiprocessor linkage and linkage disequilibrium analysis program. American Society of Human Genetics; 2006; ASHG 56th annual meeting.
go back to reference Le Couteur A, Rutter M, Lord C. Autism diagnostic interview: a semi-structure interview for parents and caregivers of autistic persons. J Autism Dev Disord. 1989;19:363–87.CrossRefPubMed Le Couteur A, Rutter M, Lord C. Autism diagnostic interview: a semi-structure interview for parents and caregivers of autistic persons. J Autism Dev Disord. 1989;19:363–87.CrossRefPubMed
go back to reference Le Couteur A, Bailey A, Goode S, Pickles A, Robertson S, Gottesman I, et al. A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol Psychiatry Allied Discipl. 1996;37(7):785–801.CrossRef Le Couteur A, Bailey A, Goode S, Pickles A, Robertson S, Gottesman I, et al. A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol Psychiatry Allied Discipl. 1996;37(7):785–801.CrossRef
go back to reference Liu XQ, Paterson AD, Szatmari P, et al. Genome-wide linkage analyses of quantitative and categorical autism subphenotypes. Biol Psychiatry. 2008;64(7):561–70.CrossRefPubMedCentralPubMed Liu XQ, Paterson AD, Szatmari P, et al. Genome-wide linkage analyses of quantitative and categorical autism subphenotypes. Biol Psychiatry. 2008;64(7):561–70.CrossRefPubMedCentralPubMed
go back to reference Lotspeich LJ, Kwon H, Schumann CM, Fryer SL, Goodlin-Jones BL, Buonocore MH, et al. Investigation of neuroanatomical differences between autism and Asperger syndrome. Arch Gen Psychiatry. 2004;61(3):291–8.CrossRefPubMed Lotspeich LJ, Kwon H, Schumann CM, Fryer SL, Goodlin-Jones BL, Buonocore MH, et al. Investigation of neuroanatomical differences between autism and Asperger syndrome. Arch Gen Psychiatry. 2004;61(3):291–8.CrossRefPubMed
go back to reference MacLean JE, Szatmari P, Jones MB, Bryson SE, Mahoney WJ, Bartolucci G, et al. Familial factors influence level of functioning in pervasive developmental disorder. J Am Acad Child Adolesc Psychiatry. 1999;38(6):746–53.CrossRefPubMed MacLean JE, Szatmari P, Jones MB, Bryson SE, Mahoney WJ, Bartolucci G, et al. Familial factors influence level of functioning in pervasive developmental disorder. J Am Acad Child Adolesc Psychiatry. 1999;38(6):746–53.CrossRefPubMed
go back to reference Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. J Hum Genet. 2008;82:477–88.CrossRef Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. J Hum Genet. 2008;82:477–88.CrossRef
go back to reference Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, et al. A second-generation combined linkage physical map of the human genome. Genome Res. 2007;17(12):1783–6.CrossRefPubMedCentralPubMed Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, et al. A second-generation combined linkage physical map of the human genome. Genome Res. 2007;17(12):1783–6.CrossRefPubMedCentralPubMed
go back to reference Pagnamenta A, Khan H, Walker S, Gerrelli D, Wing K, Bonaglia MC, et al. Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet. 2011;48:48–54.CrossRefPubMedCentralPubMed Pagnamenta A, Khan H, Walker S, Gerrelli D, Wing K, Bonaglia MC, et al. Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet. 2011;48:48–54.CrossRefPubMedCentralPubMed
go back to reference Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72.CrossRefPubMedCentralPubMed Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72.CrossRefPubMedCentralPubMed
go back to reference Roeder K, Devlin B, Wasserman L. Improving power in genome-wide association studies: weights tip the scale. Genet Epidemiol. 2007;31(7):741–7.CrossRefPubMed Roeder K, Devlin B, Wasserman L. Improving power in genome-wide association studies: weights tip the scale. Genet Epidemiol. 2007;31(7):741–7.CrossRefPubMed
go back to reference Royall R. Statistical evidence: a likelihood paradigm. London: Chapman & Hall; 1997. Royall R. Statistical evidence: a likelihood paradigm. London: Chapman & Hall; 1997.
go back to reference Silverman JM, Smith CJ, Schmeidler J, Hollander E, Lawlor BA, Fitzgerald M, et al. Symptom domains in autism and related conditions: evidence for familiality. Am J Med Genet. 2002;114(1):64–73.CrossRefPubMed Silverman JM, Smith CJ, Schmeidler J, Hollander E, Lawlor BA, Fitzgerald M, et al. Symptom domains in autism and related conditions: evidence for familiality. Am J Med Genet. 2002;114(1):64–73.CrossRefPubMed
go back to reference Smith CAB. Testing for heterogeneity of recombination fraction values in human genetics. Ann Hum Genet. 1963;27:175–82.CrossRefPubMed Smith CAB. Testing for heterogeneity of recombination fraction values in human genetics. Ann Hum Genet. 1963;27:175–82.CrossRefPubMed
go back to reference Stevens MC, Fein DA, Dunn M, Allen D, Waterhouse LH, Feinstein C, et al. Subgroups of children with autism by cluster analysis: a longitudinal examination. J Am Acad Child Adolesc Psychiatry. 2000;39(3):346–52.CrossRefPubMed Stevens MC, Fein DA, Dunn M, Allen D, Waterhouse LH, Feinstein C, et al. Subgroups of children with autism by cluster analysis: a longitudinal examination. J Am Acad Child Adolesc Psychiatry. 2000;39(3):346–52.CrossRefPubMed
go back to reference Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39(3):319–28.CrossRefPubMed Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39(3):319–28.CrossRefPubMed
go back to reference Szatmari P, Merette C, Emond C, Zwaigenbaum L, Jones MB, Maziade M, et al. Decomposing the autism phenotype into familial dimensions. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(1):3–9.CrossRefPubMed Szatmari P, Merette C, Emond C, Zwaigenbaum L, Jones MB, Maziade M, et al. Decomposing the autism phenotype into familial dimensions. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(1):3–9.CrossRefPubMed
go back to reference van der Zwaag B, Staal WG, Hochstenbach R, Poot M, Spierenburg HA, de Jonge MV, et al. A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(4):960–6.PubMedCentralPubMed van der Zwaag B, Staal WG, Hochstenbach R, Poot M, Spierenburg HA, de Jonge MV, et al. A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(4):960–6.PubMedCentralPubMed
go back to reference Vieland VJ. Bayesian linkage analysis, or: how I learned to stop worrying and love the posterior probability of linkage. Am J Hum Genet. 1998;63(4):947–54. PMID: 9758634.CrossRefPubMedCentralPubMed Vieland VJ. Bayesian linkage analysis, or: how I learned to stop worrying and love the posterior probability of linkage. Am J Hum Genet. 1998;63(4):947–54. PMID: 9758634.CrossRefPubMedCentralPubMed
go back to reference Vieland VJ. Thermometers: something for statistical geneticists to think about. Hum Hered. 2006;61(3):144–56. PMID: 16770079.CrossRefPubMed Vieland VJ. Thermometers: something for statistical geneticists to think about. Hum Hered. 2006;61(3):144–56. PMID: 16770079.CrossRefPubMed
go back to reference Vieland VJ, Hodge SE. Review of statistical evidence: a likelihood paradigm. Am J Hum Genet. 1998;63:283–9. Vieland VJ, Hodge SE. Review of statistical evidence: a likelihood paradigm. Am J Hum Genet. 1998;63:283–9.
go back to reference Vieland VJ, Wang K, Huang J. Power to detect linkage based on multiple sets of data in the presence of locus heterogeneity: comparative evaluation of model-based linkage methods for affected sib pair data. Hum Hered. 2001;51(4):199–208. PMID: 11287741.CrossRefPubMed Vieland VJ, Wang K, Huang J. Power to detect linkage based on multiple sets of data in the presence of locus heterogeneity: comparative evaluation of model-based linkage methods for affected sib pair data. Hum Hered. 2001;51(4):199–208. PMID: 11287741.CrossRefPubMed
go back to reference Vieland VJ, Huang Y, Bartlett C, Davies TF, Tomer Y. A multilocus model of the genetic architecture of autoimmune thyroid disorder, with clinical implications. Am J Hum Genet. 2008;82(6):1349–56. PMID: 18485327.CrossRefPubMedCentralPubMed Vieland VJ, Huang Y, Bartlett C, Davies TF, Tomer Y. A multilocus model of the genetic architecture of autoimmune thyroid disorder, with clinical implications. Am J Hum Genet. 2008;82(6):1349–56. PMID: 18485327.CrossRefPubMedCentralPubMed
go back to reference Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry. 2006;11(1):18–28.CrossRef Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry. 2006;11(1):18–28.CrossRef
go back to reference Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. PMID: 17554300.CrossRef Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. PMID: 17554300.CrossRef
go back to reference Wratten NS, Memoli H, Huang Y, Dulencin AM, Matteson PG, Cornacchia MA, et al. Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. Am J Psychiatry. 2009;166(4):434–41.CrossRefPubMedCentralPubMed Wratten NS, Memoli H, Huang Y, Dulencin AM, Matteson PG, Cornacchia MA, et al. Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. Am J Psychiatry. 2009;166(4):434–41.CrossRefPubMedCentralPubMed
go back to reference Xu J, Zwaigenbaum L, Szatmari P, Scherer SW. Molecular cytogenetics of autism. Curr Genomics. 2004;5(4):347–64.CrossRef Xu J, Zwaigenbaum L, Szatmari P, Scherer SW. Molecular cytogenetics of autism. Curr Genomics. 2004;5(4):347–64.CrossRef
go back to reference Yang X, Huang J, Logue MW, Vieland VJ. The posterior probability of linkage allowing for linkage disequilibrium and a new estimate of disequilibrium between a trait and a marker. Hum Hered. 2005;59:210–9. PMID: 16015031.CrossRefPubMed Yang X, Huang J, Logue MW, Vieland VJ. The posterior probability of linkage allowing for linkage disequilibrium and a new estimate of disequilibrium between a trait and a marker. Hum Hered. 2005;59:210–9. PMID: 16015031.CrossRefPubMed
Metadata
Title
Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism
Authors
Veronica J. Vieland
Joachim Hallmayer
Yungui Huang
Alistair T. Pagnamenta
Dalila Pinto
Hameed Khan
Anthony P. Monaco
Andrew D. Paterson
Stephen W. Scherer
James S. Sutcliffe
Peter Szatmari
The Autism Genome Project (AGP)
Publication date
01-06-2011
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 2/2011
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1007/s11689-011-9072-9

Other articles of this Issue 2/2011

Journal of Neurodevelopmental Disorders 2/2011 Go to the issue