Skip to main content
Top
Published in: Intensive Care Medicine 6/2019

Open Access 01-06-2019 | Nosocomial Infection | Original

Sustained reduction of catheter-associated bloodstream infections with enhancement of catheter bundle by chlorhexidine dressings over 11 years

Authors: Philippe Eggimann, Jean-Luc Pagani, Elise Dupuis-Lozeron, Bruce Ekholm MS, Marie-Josèphe Thévenin, Christine Joseph, Jean-Pierre Revelly, Yok-Ai Que

Published in: Intensive Care Medicine | Issue 6/2019

Login to get access

Abstract

Background

Prospective randomized controlled studies have demonstrated that addition of chlorhexidine (CHG) dressings reduces the rate of catheter (central venous and arterial)-associated bloodstream infections (CABSIs). However, studies confirming their impact in a real-world setting are lacking.

Methods

We conducted a real-world data study evaluating the impact of incrementally introducing chlorhexidine dressings (sponge or gel) in addition to an ongoing catheter bundle on the rates of CABSI, expressed as incidence density rates per 1000 catheter-days measured as part of a surveillance program. Poisson regression models were used to compare infection rates over time. Both dressings were used simultaneously during one of the five study periods.

Results

From 2006 to 2014, 18,286 patients were admitted (91,292 ICU-days and 155,242 catheter-days). We recorded 111 CABSIs. We observed a progressive but significant decrease of CABSI rates from 1.48 (95% CI 1.09–2.01) without CHG dressings to 0.69 (95% CI 0.43–1.09) and 0.23 (95% CI 0.11–0.48) episodes per 1000 catheter-days when CHG sponge and CHG gel dressings were used (p = 0.0007; p < 0.001). A non-significant lower rate of infections occurred with CHG gel compared with CHG sponge dressings. An identical low rate of allergic skin reactions (0.3/1000 device-days) was observed with both types of CHX dressings. Post-study data until 2018 confirmed a sustained decrease of infection rates over 11 years.

Conclusions

The addition of chlorhexidine dressings to all CVC and arterial lines to an ongoing catheter bundle was associated with a sustained 11-year reduction of all catheter-associated bloodstream infections. This large real-world data study further supports the current recommendations for the systematic use of CHG dressings on all catheters of ICU patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D (2000) Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 355:1864–1868CrossRefPubMed Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D (2000) Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 355:1864–1868CrossRefPubMed
2.
go back to reference Pronovost P, Needham D, Berenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355:2725–2732CrossRefPubMed Pronovost P, Needham D, Berenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355:2725–2732CrossRefPubMed
3.
go back to reference Ista E, van der Hoven B, Kornelisse RF et al (2016) Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis 16:724–734CrossRefPubMed Ista E, van der Hoven B, Kornelisse RF et al (2016) Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis 16:724–734CrossRefPubMed
4.
go back to reference Lambert ML, Silversmit G, Savey A et al (2014) Preventable proportion of severe infections acquired in intensive care units: case-mix adjusted estimations from patient-based surveillance data. Infect Control Hosp Epidemiol 35:494–501CrossRefPubMed Lambert ML, Silversmit G, Savey A et al (2014) Preventable proportion of severe infections acquired in intensive care units: case-mix adjusted estimations from patient-based surveillance data. Infect Control Hosp Epidemiol 35:494–501CrossRefPubMed
5.
go back to reference Timsit JF, L’Heriteau F, Lepape A et al (2012) A multicentre analysis of catheter-related infection based on a hierarchical model. Intensive Care Med 38:1662–1672CrossRefPubMed Timsit JF, L’Heriteau F, Lepape A et al (2012) A multicentre analysis of catheter-related infection based on a hierarchical model. Intensive Care Med 38:1662–1672CrossRefPubMed
6.
go back to reference Haga Y, Miyanari N, Takahashi T et al (2013) Risk factors for catheter-related bloodstream infections in adult hospitalized patients—multicenter cohort study. Scand J Infect Dis 45:773–779CrossRefPubMed Haga Y, Miyanari N, Takahashi T et al (2013) Risk factors for catheter-related bloodstream infections in adult hospitalized patients—multicenter cohort study. Scand J Infect Dis 45:773–779CrossRefPubMed
7.
go back to reference Eggimann P, Hugonnet S, Sax H, Harbarth S, Chevrolet JC, Pittet D (2005) Long-term reduction of vascular access-associated bloodstream infection. Ann Intern Med 142:875–876CrossRefPubMed Eggimann P, Hugonnet S, Sax H, Harbarth S, Chevrolet JC, Pittet D (2005) Long-term reduction of vascular access-associated bloodstream infection. Ann Intern Med 142:875–876CrossRefPubMed
8.
go back to reference Pronovost PJ, Watson SR, Goeschel CA, Hyzy RC, Berenholtz SM (2016) Sustaining reductions in central line-associated bloodstream infections in Michigan intensive care units: a 10-year analysis. Am J Med Qual 31:197–202CrossRefPubMed Pronovost PJ, Watson SR, Goeschel CA, Hyzy RC, Berenholtz SM (2016) Sustaining reductions in central line-associated bloodstream infections in Michigan intensive care units: a 10-year analysis. Am J Med Qual 31:197–202CrossRefPubMed
9.
go back to reference Lin WP, Chang YC, Wu UI et al (2018) Multimodal interventions for bundle implementation to decrease central line-associated bloodstream infections in adult intensive care units in a teaching hospital in Taiwan, 2009-2013. J Microbiol Immunol Infect 51:644–651CrossRefPubMed Lin WP, Chang YC, Wu UI et al (2018) Multimodal interventions for bundle implementation to decrease central line-associated bloodstream infections in adult intensive care units in a teaching hospital in Taiwan, 2009-2013. J Microbiol Immunol Infect 51:644–651CrossRefPubMed
10.
go back to reference Castagna HM, Kawagoe JY, Goncalves P et al (2016) Active surveillance and safety organizational goals to reduce central line-associated bloodstream infections outside the intensive care unit: 9 years of experience. Am J Infect Control 44:1058–1060CrossRefPubMed Castagna HM, Kawagoe JY, Goncalves P et al (2016) Active surveillance and safety organizational goals to reduce central line-associated bloodstream infections outside the intensive care unit: 9 years of experience. Am J Infect Control 44:1058–1060CrossRefPubMed
11.
go back to reference Lee GM, Kleinman K, Soumerai SB et al (2012) Effect of nonpayment for preventable infections in US hospitals. N Engl J Med 367:1428–1437CrossRefPubMed Lee GM, Kleinman K, Soumerai SB et al (2012) Effect of nonpayment for preventable infections in US hospitals. N Engl J Med 367:1428–1437CrossRefPubMed
12.
go back to reference Furuya EY, Dick A, Perencevich EN, Pogorzelska M, Goldmann D, Stone PW (2011) Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One 6:e15452CrossRefPubMedPubMedCentral Furuya EY, Dick A, Perencevich EN, Pogorzelska M, Goldmann D, Stone PW (2011) Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One 6:e15452CrossRefPubMedPubMedCentral
13.
go back to reference Ziegler MJ, Pellegrini DC, Safdar N (2015) Attributable mortality of central line associated bloodstream infection: systematic review and meta-analysis. Infection 43:29–36CrossRefPubMed Ziegler MJ, Pellegrini DC, Safdar N (2015) Attributable mortality of central line associated bloodstream infection: systematic review and meta-analysis. Infection 43:29–36CrossRefPubMed
14.
go back to reference van der Kooi T, Sax H, Pittet D et al (2018) Prevention of hospital infections by intervention and training (PROHIBIT): results of a pan-European cluster-randomized multicentre study to reduce central venous catheter-related bloodstream infections. Intensive Care Med 44:48–60CrossRefPubMed van der Kooi T, Sax H, Pittet D et al (2018) Prevention of hospital infections by intervention and training (PROHIBIT): results of a pan-European cluster-randomized multicentre study to reduce central venous catheter-related bloodstream infections. Intensive Care Med 44:48–60CrossRefPubMed
15.
go back to reference Timsit JF, Schwebel C, Bouadma L et al (2009) Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 301:1231–1241CrossRefPubMed Timsit JF, Schwebel C, Bouadma L et al (2009) Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 301:1231–1241CrossRefPubMed
16.
go back to reference Timsit JF, Mimoz O, Mourvillier B et al (2012) Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 186:1272–1278CrossRefPubMed Timsit JF, Mimoz O, Mourvillier B et al (2012) Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 186:1272–1278CrossRefPubMed
17.
go back to reference Safdar N, O’Horo JC, Ghufran A et al (2014) Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis*. Crit Care Med 42:1703–1713CrossRefPubMedPubMedCentral Safdar N, O’Horo JC, Ghufran A et al (2014) Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis*. Crit Care Med 42:1703–1713CrossRefPubMedPubMedCentral
18.
go back to reference O’Grady NP, Alexander M, Dellinger EP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 51:1–29PubMed O’Grady NP, Alexander M, Dellinger EP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 51:1–29PubMed
19.
go back to reference Jenks M, Craig J, Green W, Hewitt N, Arber M, Sims A (2016) Tegaderm CHG IV securement dressing for central venous and arterial catheter insertion sites: a NICE medical technology guidance. Appl Health Econ Health Policy 14:135–149CrossRefPubMed Jenks M, Craig J, Green W, Hewitt N, Arber M, Sims A (2016) Tegaderm CHG IV securement dressing for central venous and arterial catheter insertion sites: a NICE medical technology guidance. Appl Health Econ Health Policy 14:135–149CrossRefPubMed
20.
go back to reference Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMed
21.
go back to reference Lucet JC, Bouadma L, Zahar JR et al (2010) Infectious risk associated with arterial catheters compared with central venous catheters. Crit Care Med 38:1030–1035CrossRefPubMed Lucet JC, Bouadma L, Zahar JR et al (2010) Infectious risk associated with arterial catheters compared with central venous catheters. Crit Care Med 38:1030–1035CrossRefPubMed
22.
go back to reference Bion J, Richardson A, Hibbert P et al (2013) ‘Matching Michigan’: a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ Qual Saf 22:110–123CrossRefPubMed Bion J, Richardson A, Hibbert P et al (2013) ‘Matching Michigan’: a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ Qual Saf 22:110–123CrossRefPubMed
23.
go back to reference Palomar M, Alvarez-Lerma F, Riera A et al (2013) Impact of a national multimodal intervention to prevent catheter-related bloodstream infection in the ICU: the Spanish experience. Crit Care Med 41:2364–2372CrossRefPubMed Palomar M, Alvarez-Lerma F, Riera A et al (2013) Impact of a national multimodal intervention to prevent catheter-related bloodstream infection in the ICU: the Spanish experience. Crit Care Med 41:2364–2372CrossRefPubMed
24.
go back to reference Maunoury F, Farinetto C, Ruckly S et al (2018) Cost-effectiveness analysis of a transparentvantimicrobial dressing for managing central. Venous and arterial catheters in intensiveve care units. PLoS One. 13(5):e0197747CrossRefPubMedPubMedCentral Maunoury F, Farinetto C, Ruckly S et al (2018) Cost-effectiveness analysis of a transparentvantimicrobial dressing for managing central. Venous and arterial catheters in intensiveve care units. PLoS One. 13(5):e0197747CrossRefPubMedPubMedCentral
Metadata
Title
Sustained reduction of catheter-associated bloodstream infections with enhancement of catheter bundle by chlorhexidine dressings over 11 years
Authors
Philippe Eggimann
Jean-Luc Pagani
Elise Dupuis-Lozeron
Bruce Ekholm MS
Marie-Josèphe Thévenin
Christine Joseph
Jean-Pierre Revelly
Yok-Ai Que
Publication date
01-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 6/2019
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-019-05617-x

Other articles of this Issue 6/2019

Intensive Care Medicine 6/2019 Go to the issue