Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2019

Open Access 01-12-2019 | Nosocomial Infection | Research

Clinical characteristics, antimicrobial resistance and capsular types of community-acquired, healthcare-associated, and nosocomial Klebsiella pneumoniae bacteremia

Authors: Chih-Han Juan, Chien Chuang, Chi-Han Chen, Lo Li, Yi-Tsung Lin

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2019

Login to get access

Abstract

Background

Klebsiella pneumoniae bacteremia is a major cause of morbidity and mortality worldwide. We aimed to compare the clinical characteristics, distribution of capsular types, and antimicrobial resistance of K. pneumoniae bacteremia among community-acquired (CA), healthcare-associated (HCA), and nosocomial infections.

Methods

This retrospective study of patients with K. pneumoniae bacteremia was conducted at Taipei Veterans General Hospital from January to December 2015. Clinical characteristics of K. pneumoniae bacteremia were collected. The K. pneumoniae isolates were subjected to antimicrobial susceptibility testing and capsular genotyping.

Results

In total, 337 patients with K. pneumoniae bacteremia were identified: 70 (20.8%), 102 (30.3%), and 165 (48.9%) presented with CA, HCA, and nosocomial infection, respectively. The 28-day mortality of HCA bacteremia was lower than that of nosocomial bacteremia (17.6% versus 30.9%, p = 0.016); however, that of the HCA and CA bacteremia was similar (17.6% versus 14.3%, p = 0.557). CA isolates had the highest prevalence of virulent capsular types (51.4%), followed by HCA (36.3%) and nosocomial isolates (19.4%). The proportion of multidrug-resistant (MDR) isolates was highest in nosocomial infections (41.8%), followed by HCA (23.5%) and CA infections (5.7%).

Conclusion

CA, HCA and nosocomial K. pneumoniae are distinct entities, as evidenced by the differences in clinical characteristics, antimicrobial resistance, and capsular types found in this study.
Literature
1.
go back to reference Juan CH, Huang YW, Lin YT, Yang TC, Wang FD. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2016;60:7357–63.PubMedPubMedCentral Juan CH, Huang YW, Lin YT, Yang TC, Wang FD. Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2016;60:7357–63.PubMedPubMedCentral
2.
go back to reference Meatherall BL, Gregson D, Ross T, Pitout JD, Laupland KB. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med. 2009;122:866–73.CrossRef Meatherall BL, Gregson D, Ross T, Pitout JD, Laupland KB. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med. 2009;122:866–73.CrossRef
3.
go back to reference Ko WC, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 2002;8:160–6.CrossRef Ko WC, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 2002;8:160–6.CrossRef
4.
go back to reference Tsay RW, Siu LK, Fung CP, Chang FY. Characteritic of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection. Arch Intern Med. 2002;162:1021–7.CrossRef Tsay RW, Siu LK, Fung CP, Chang FY. Characteritic of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection. Arch Intern Med. 2002;162:1021–7.CrossRef
5.
go back to reference Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteremia: community versus nosocomial infection. QJM. 1996;89:933–41.CrossRef Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteremia: community versus nosocomial infection. QJM. 1996;89:933–41.CrossRef
6.
go back to reference Watanakunakorn C, Jura J. Klebsiella bacteremia: a review of 196 episodes during a decade (1980–1989). Scand J Infect Dis. 1991;23:399–405.CrossRef Watanakunakorn C, Jura J. Klebsiella bacteremia: a review of 196 episodes during a decade (1980–1989). Scand J Infect Dis. 1991;23:399–405.CrossRef
7.
go back to reference Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41:252–75.CrossRef Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41:252–75.CrossRef
8.
go back to reference Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11:589–603.CrossRef Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11:589–603.CrossRef
9.
go back to reference Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis. 2012;12:881–7.CrossRef Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis. 2012;12:881–7.CrossRef
10.
go back to reference Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL, Chang SC. Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis. 2007;45:284–93.CrossRef Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL, Chang SC. Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis. 2007;45:284–93.CrossRef
11.
go back to reference Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, et al. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 2006;42:1351–8.CrossRef Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, et al. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 2006;42:1351–8.CrossRef
12.
go back to reference Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137:791–7.CrossRef Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137:791–7.CrossRef
13.
go back to reference Wu HS, Wang FD, Tseng CP, Wu TH, Lin YT, Fung CP. Characteristics of healthcare-associated and community-acquired Klebsiella pneumoniae bacteremia in Taiwan. J Inf Secur. 2012;64:162–8. Wu HS, Wang FD, Tseng CP, Wu TH, Lin YT, Fung CP. Characteristics of healthcare-associated and community-acquired Klebsiella pneumoniae bacteremia in Taiwan. J Inf Secur. 2012;64:162–8.
14.
go back to reference Jung Y, Lee MJ, Sin HY, Kim NH, Hwang JH, Park J, et al. Differences in characteristics between healthcare-associated and community-acquired infection in community-onset Klebsiella pneumoniae bloodstream infection in Korea. BMC Infect Dis. 2012;12:239.CrossRef Jung Y, Lee MJ, Sin HY, Kim NH, Hwang JH, Park J, et al. Differences in characteristics between healthcare-associated and community-acquired infection in community-onset Klebsiella pneumoniae bloodstream infection in Korea. BMC Infect Dis. 2012;12:239.CrossRef
15.
go back to reference Lin YT, Wang YP, Wang FD, Fung CP. Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front Microbiol. 2015;9:122.CrossRef Lin YT, Wang YP, Wang FD, Fung CP. Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front Microbiol. 2015;9:122.CrossRef
16.
go back to reference Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial infections. Ann Intern Med. 2004;140:26–32.CrossRef Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial infections. Ann Intern Med. 2004;140:26–32.CrossRef
17.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef
18.
go back to reference Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 27th informational supplement. CLSI document M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 27th informational supplement. CLSI document M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
19.
go back to reference Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRef Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRef
20.
go back to reference Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology. 2011;157:3446–57.CrossRef Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology. 2011;157:3446–57.CrossRef
21.
go back to reference Tsai FC, Huang YT, Chang LY, Wang JT. Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis. 2008;14:1592–600.CrossRef Tsai FC, Huang YT, Chang LY, Wang JT. Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis. 2008;14:1592–600.CrossRef
22.
go back to reference Fung CP, Chang FY, Lee SC, Hu BS, Kuo BI, Liu CY, et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut. 2002;50:420–4.CrossRef Fung CP, Chang FY, Lee SC, Hu BS, Kuo BI, Liu CY, et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut. 2002;50:420–4.CrossRef
23.
go back to reference Cubero M, Grau I, Tubau F, Pallarés R, Domínguez MÁ, Liñares J, et al. Molecular epidemiology of Klebsiella pneumoniae strains causing bloodstream infections in adults. Microb Drug Resist. 2018;24:949–57.CrossRef Cubero M, Grau I, Tubau F, Pallarés R, Domínguez MÁ, Liñares J, et al. Molecular epidemiology of Klebsiella pneumoniae strains causing bloodstream infections in adults. Microb Drug Resist. 2018;24:949–57.CrossRef
24.
go back to reference Sellick JA, Russo TA. Getting hypervirulent Klebsiella pneumoniae on the radar screen. Curr Opin Infect Dis. 2018;31:341–6.PubMed Sellick JA, Russo TA. Getting hypervirulent Klebsiella pneumoniae on the radar screen. Curr Opin Infect Dis. 2018;31:341–6.PubMed
Metadata
Title
Clinical characteristics, antimicrobial resistance and capsular types of community-acquired, healthcare-associated, and nosocomial Klebsiella pneumoniae bacteremia
Authors
Chih-Han Juan
Chien Chuang
Chi-Han Chen
Lo Li
Yi-Tsung Lin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2019
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-018-0426-x

Other articles of this Issue 1/2019

Antimicrobial Resistance & Infection Control 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine