Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Non-weight-bearing neural control of a powered transfemoral prosthesis

Authors: Levi J Hargrove, Ann M Simon, Robert Lipschutz, Suzanne B Finucane, Todd A Kuiken

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Lower limb prostheses have traditionally been mechanically passive devices without electronic control systems. Microprocessor-controlled passive and powered devices have recently received much interest from the clinical and research communities. The control systems for these devices typically use finite-state controllers to interpret data measured from mechanical sensors embedded within the prosthesis. In this paper we investigated a control system that relied on information extracted from myoelectric signals to control a lower limb prosthesis while amputee patients were seated. Sagittal plane motions of the knee and ankle can be accurately (>90%) recognized and controlled in both a virtual environment and on an actuated transfemoral prosthesis using only myoelectric signals measured from nine residual thigh muscles. Patients also demonstrated accurate (~90%) control of both the femoral and tibial rotation degrees of freedom within the virtual environment. A channel subset investigation was completed and the results showed that only five residual thigh muscles are required to achieve accurate control. This research is the first step in our long-term goal of implementing myoelectric control of lower limb prostheses during both weight-bearing and non-weight-bearing activities for individuals with transfemoral amputation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 2008, 89: 422-429. 10.1016/j.apmr.2007.11.005CrossRefPubMed Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 2008, 89: 422-429. 10.1016/j.apmr.2007.11.005CrossRefPubMed
2.
go back to reference Grimes DL, Flowers WC, Donath M: Feasibility of an active control scheme for above knee prostheses. J Biomech Eng 1977,99(4):215-221. 10.1115/1.3426293CrossRef Grimes DL, Flowers WC, Donath M: Feasibility of an active control scheme for above knee prostheses. J Biomech Eng 1977,99(4):215-221. 10.1115/1.3426293CrossRef
3.
go back to reference Peeraer L, Tilley K, Van der Perre G: A computer controlled knee prosthesis: a preliminary report. J Eng Technol 1988, 13: 134-135. Peeraer L, Tilley K, Van der Perre G: A computer controlled knee prosthesis: a preliminary report. J Eng Technol 1988, 13: 134-135.
4.
go back to reference Aeyels B, Peeraer L, Vander Sloten J, Van der Perre G: Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results. J Biomed Eng 1992, 14: 199-202. 10.1016/0141-5425(92)90052-MCrossRefPubMed Aeyels B, Peeraer L, Vander Sloten J, Van der Perre G: Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results. J Biomed Eng 1992, 14: 199-202. 10.1016/0141-5425(92)90052-MCrossRefPubMed
5.
go back to reference I. Otto Bock Orthopedic Industry: Manual for the 3c100 Otto Bock C-LEG. Germany: Duderstadt; 1998. I. Otto Bock Orthopedic Industry: Manual for the 3c100 Otto Bock C-LEG. Germany: Duderstadt; 1998.
7.
go back to reference Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H: A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 2005, 84: 563-575. 10.1097/01.phm.0000174665.74933.0bCrossRefPubMed Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H: A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 2005, 84: 563-575. 10.1097/01.phm.0000174665.74933.0bCrossRefPubMed
8.
go back to reference Taylor MB, Clark E, Offord EA, Baxter C: A comparison of energy expenditure by a high level trans-femoral amputee using the Intellegent Prosthesis and conventionally damped prosthetic limbs. Prosthet Orthot Int 1996, 20: 116-121.PubMed Taylor MB, Clark E, Offord EA, Baxter C: A comparison of energy expenditure by a high level trans-femoral amputee using the Intellegent Prosthesis and conventionally damped prosthetic limbs. Prosthet Orthot Int 1996, 20: 116-121.PubMed
9.
go back to reference Schmalz T, Blumentritt S, Jarasch R: Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 2002, 16: 255-263. 10.1016/S0966-6362(02)00008-5CrossRefPubMed Schmalz T, Blumentritt S, Jarasch R: Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 2002, 16: 255-263. 10.1016/S0966-6362(02)00008-5CrossRefPubMed
10.
go back to reference Winter DA: The biomechanics and motor control of human gait: normal, elderly and pathological. 2nd edition. Kitchner, ON, Canada: Waterloo Biomechanics; 1991. Winter DA: The biomechanics and motor control of human gait: normal, elderly and pathological. 2nd edition. Kitchner, ON, Canada: Waterloo Biomechanics; 1991.
11.
go back to reference Nadeau S, McFadyen BJ, Malouin F: Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clin Biomech 2003, 18: 950-959. 10.1016/S0268-0033(03)00179-7CrossRef Nadeau S, McFadyen BJ, Malouin F: Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clin Biomech 2003, 18: 950-959. 10.1016/S0268-0033(03)00179-7CrossRef
12.
go back to reference Reiner R, Rabuffetti M, Frigo C: Joint powers in stair climbing at different slopes. Proc IEEE Int Conf Eng Med Biol 1999, 1: 530. Reiner R, Rabuffetti M, Frigo C: Joint powers in stair climbing at different slopes. Proc IEEE Int Conf Eng Med Biol 1999, 1: 530.
13.
go back to reference Prilutsky BI, Petrova LN, Raitsin LM: Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion. J Biomech 1996, 29: 405-416. 10.1016/0021-9290(95)00083-6CrossRefPubMed Prilutsky BI, Petrova LN, Raitsin LM: Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion. J Biomech 1996, 29: 405-416. 10.1016/0021-9290(95)00083-6CrossRefPubMed
14.
go back to reference DeVita P, Torry M, Glover KL, Speroni DL: A functional knee brace alters joint torque and power patterns during walking and running. J Biomech 1996, 29: 583-588. 10.1016/0021-9290(95)00115-8CrossRefPubMed DeVita P, Torry M, Glover KL, Speroni DL: A functional knee brace alters joint torque and power patterns during walking and running. J Biomech 1996, 29: 583-588. 10.1016/0021-9290(95)00115-8CrossRefPubMed
15.
go back to reference Nagano A, Ishige Y, Fukashiro S: Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps. J Biomech 1998, 31: 951-955. 10.1016/S0021-9290(98)00094-3CrossRefPubMed Nagano A, Ishige Y, Fukashiro S: Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps. J Biomech 1998, 31: 951-955. 10.1016/S0021-9290(98)00094-3CrossRefPubMed
16.
17.
go back to reference Holgate MA, Hitt JK, Bellman RD, Sugar TG, Hollander KW: The SPARKy (Spring Ankle with Regenerative kinetics) project: Choosing a DC motor based actuation method. In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. Scottsdale, AZ, USA: 2nd IEEE RAS & EMBS International Conference; 2008:163-168. Holgate MA, Hitt JK, Bellman RD, Sugar TG, Hollander KW: The SPARKy (Spring Ankle with Regenerative kinetics) project: Choosing a DC motor based actuation method. In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. Scottsdale, AZ, USA: 2nd IEEE RAS & EMBS International Conference; 2008:163-168.
18.
go back to reference Martinez-Villalpando EC, Weber J, Elliott G, Herr H: Design of an agonist–antagonist active knee prosthesis, in Biomedical Robotics and Biomechatronics. In BioRob 2008. Scottsdale, AZ, USA: 2nd IEEE RAS & EMBS International Conference; 2008:529-534. Martinez-Villalpando EC, Weber J, Elliott G, Herr H: Design of an agonist–antagonist active knee prosthesis, in Biomedical Robotics and Biomechatronics. In BioRob 2008. Scottsdale, AZ, USA: 2nd IEEE RAS & EMBS International Conference; 2008:529-534.
20.
go back to reference Peeraer L, Aeyels B, Van der Perre G: Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J Biomed Eng 1990, 12: 178-182. 10.1016/0141-5425(90)90037-NCrossRefPubMed Peeraer L, Aeyels B, Van der Perre G: Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J Biomed Eng 1990, 12: 178-182. 10.1016/0141-5425(90)90037-NCrossRefPubMed
21.
go back to reference Au S, Berniker M, Herr H: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw 2008, 21: 654-666. 10.1016/j.neunet.2008.03.006CrossRefPubMed Au S, Berniker M, Herr H: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw 2008, 21: 654-666. 10.1016/j.neunet.2008.03.006CrossRefPubMed
22.
go back to reference Ha K, Varo HA, Goldfarb M: Volitional Control of a Prosthetic Knee Using Surface Electromyography. IEEE Trans Biomed Eng 2011, 58: 144-151.CrossRefPubMed Ha K, Varo HA, Goldfarb M: Volitional Control of a Prosthetic Knee Using Surface Electromyography. IEEE Trans Biomed Eng 2011, 58: 144-151.CrossRefPubMed
23.
go back to reference Jin D, Yang J, Zhang R, Wang R, Zhang J: Terrain Identification for Prosthetic Knees Based on Electromyographic Signal Features. Tsinghua Sci Tech 2006, 11: 74-79. 10.1016/S1007-0214(06)70157-2CrossRef Jin D, Yang J, Zhang R, Wang R, Zhang J: Terrain Identification for Prosthetic Knees Based on Electromyographic Signal Features. Tsinghua Sci Tech 2006, 11: 74-79. 10.1016/S1007-0214(06)70157-2CrossRef
24.
25.
go back to reference Huang H, Zhang F, Hargrove LJ, Zhi D, Rogers DR, Englehart KB: "Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular Mechanical Fusion," Biomedical Engineering . IEEE Transactions 2011, 58: 2867-2875. Huang H, Zhang F, Hargrove LJ, Zhi D, Rogers DR, Englehart KB: "Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular Mechanical Fusion," Biomedical Engineering . IEEE Transactions 2011, 58: 2867-2875.
26.
go back to reference Hargrove L, Simon A, Lipschutz R, Finucane S, Kuiken T: Real-Time Myoelectric Control of Knee and Ankle Motions for Transfemoral Amputees. JAMA 2011, 305: 1442-1444.CrossRef Hargrove L, Simon A, Lipschutz R, Finucane S, Kuiken T: Real-Time Myoelectric Control of Knee and Ankle Motions for Transfemoral Amputees. JAMA 2011, 305: 1442-1444.CrossRef
27.
go back to reference Dyck WR, Onyshko S, Hobson DA, Winter DA, Quanbury AO Bull Prosthet Res. In A voluntarily controlled electrohydraulic above-knee prosthesis. Spring; 1975:169-186. Dyck WR, Onyshko S, Hobson DA, Winter DA, Quanbury AO Bull Prosthet Res. In A voluntarily controlled electrohydraulic above-knee prosthesis. Spring; 1975:169-186.
28.
go back to reference Myers D, Moskowitz GD: Myoelectric Pattern Recognition for Use in the Volitional Control of Above-Knee Prostheses. IEEE Trans Syst Man Cybern 1981, 11: 296-302.CrossRef Myers D, Moskowitz GD: Myoelectric Pattern Recognition for Use in the Volitional Control of Above-Knee Prostheses. IEEE Trans Syst Man Cybern 1981, 11: 296-302.CrossRef
29.
go back to reference Hillstrom H, Moskowitz GD: Robust Intent Recognition for Prosthesis Control. Paris, France: 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1992:1448-1449. Hillstrom H, Moskowitz GD: Robust Intent Recognition for Prosthesis Control. Paris, France: 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1992:1448-1449.
30.
go back to reference Delis A, Carvalho J, Nascimento , Borges G: Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses. InTech; 2011. Delis A, Carvalho J, Nascimento , Borges G: Myoelectric Knee Angle Estimation Algorithms for Control of Active Transfemoral Leg Prostheses. InTech; 2011.
31.
go back to reference Losier Y, Wilson A: Moving Towards an Open Standard: The UNB Prosthetic Device Communication Protoco. Leipzig, Germany: International Society for Prosthetics & Orthotics (ISPO) World Congress; 2010. Losier Y, Wilson A: Moving Towards an Open Standard: The UNB Prosthetic Device Communication Protoco. Leipzig, Germany: International Society for Prosthetics & Orthotics (ISPO) World Congress; 2010.
32.
go back to reference Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301: 619-628. 10.1001/jama.2009.116PubMedCentralCrossRefPubMed Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301: 619-628. 10.1001/jama.2009.116PubMedCentralCrossRefPubMed
33.
go back to reference Hargrove L, Englehart K, Hudgins B: A Comparison of Surface and Intramuscular Myoelectric Signal Classification. IEEE Trans Biomed Eng 2007, 54: 847-853.CrossRefPubMed Hargrove L, Englehart K, Hudgins B: A Comparison of Surface and Intramuscular Myoelectric Signal Classification. IEEE Trans Biomed Eng 2007, 54: 847-853.CrossRefPubMed
34.
go back to reference Sup F, Bohara A, Goldfarb M: Design and control of a powered transfemoral prosthesis. Int J Robotics Res 2008, 27: 263-273. 10.1177/0278364907084588CrossRef Sup F, Bohara A, Goldfarb M: Design and control of a powered transfemoral prosthesis. Int J Robotics Res 2008, 27: 263-273. 10.1177/0278364907084588CrossRef
35.
go back to reference Li G, Schultz AE, Kuiken TA: Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 185-192.PubMedCentralCrossRefPubMed Li G, Schultz AE, Kuiken TA: Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 185-192.PubMedCentralCrossRefPubMed
36.
go back to reference Bunderson N, Kuiken T: Quantification of feature space changes with experience during electromyogram pattern recognition control. IEEE Trans Neural Syst Rehabil Eng 2012, 20: 239-246.CrossRefPubMed Bunderson N, Kuiken T: Quantification of feature space changes with experience during electromyogram pattern recognition control. IEEE Trans Neural Syst Rehabil Eng 2012, 20: 239-246.CrossRefPubMed
37.
go back to reference Simon A, Lock BA, Stubblefield K: Patient Training for Functional Use of Pattern Recognition-Controlled Prostheses. J Prosthet Orthot 2012, 24: 56-64. 10.1097/JPO.0b013e3182515437PubMedCentralCrossRefPubMed Simon A, Lock BA, Stubblefield K: Patient Training for Functional Use of Pattern Recognition-Controlled Prostheses. J Prosthet Orthot 2012, 24: 56-64. 10.1097/JPO.0b013e3182515437PubMedCentralCrossRefPubMed
38.
go back to reference Hargrove L, Zhou P, Englehart K, Kuiken T: The Effect of ECG Interference on Pattern Recognition Based Myoelectric Control For Targeted Muscle Reinnervated Patients. IEEE Trans Biomed Eng 2009, 56: 2197-2201.CrossRefPubMed Hargrove L, Zhou P, Englehart K, Kuiken T: The Effect of ECG Interference on Pattern Recognition Based Myoelectric Control For Targeted Muscle Reinnervated Patients. IEEE Trans Biomed Eng 2009, 56: 2197-2201.CrossRefPubMed
39.
go back to reference Hargrove L, Englehart K, Hudgins B: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed Signal Process Control 2008, 3: 175-180. 10.1016/j.bspc.2007.11.005CrossRef Hargrove L, Englehart K, Hudgins B: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed Signal Process Control 2008, 3: 175-180. 10.1016/j.bspc.2007.11.005CrossRef
40.
go back to reference Scheme E, Fougner A, Stavdahl O, Chan A, Englehart K: Examining the adverse effects of limb position on pattern recognition based myoelectric control. Buenos Aires, Argentina: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2010.CrossRef Scheme E, Fougner A, Stavdahl O, Chan A, Englehart K: Examining the adverse effects of limb position on pattern recognition based myoelectric control. Buenos Aires, Argentina: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2010.CrossRef
41.
go back to reference Young A, Hargrove L, Kuiken T: Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Changing Interelectrode Distance and Electrode Configuration. IEEE Trans Biomed Eng 2012, 59: 645-652.PubMedCentralCrossRefPubMed Young A, Hargrove L, Kuiken T: Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Changing Interelectrode Distance and Electrode Configuration. IEEE Trans Biomed Eng 2012, 59: 645-652.PubMedCentralCrossRefPubMed
42.
go back to reference Hudgins B, Parker P, Scot RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94. 10.1109/10.204774CrossRefPubMed Hudgins B, Parker P, Scot RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94. 10.1109/10.204774CrossRefPubMed
Metadata
Title
Non-weight-bearing neural control of a powered transfemoral prosthesis
Authors
Levi J Hargrove
Ann M Simon
Robert Lipschutz
Suzanne B Finucane
Todd A Kuiken
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-62

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue