Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Control of thumb force using surface functional electrical stimulation and muscle load sharing

Authors: Ard J Westerveld, Alfred C Schouten, Peter H Veltink, Herman van der Kooij

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction.

Methods

Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored.

Results

The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance.

Conclusions

Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be generated through load sharing among redundant muscles. The force vector maps are subject specific and also suitable in feedforward and feedback control taking the individual’s available workspace into account. With feedback, more accurate control of muscle force can be achieved.
Appendix
Available only for authorised users
Literature
2.
go back to reference Crago PE, Nakai RJ, Chizeck H: Feedback regulation of hand grasp opening and contact force during stimulation of paralyzed muscle. IEEE Trans Biomed Eng 1991, 38: 17-28. 10.1109/10.68205CrossRefPubMed Crago PE, Nakai RJ, Chizeck H: Feedback regulation of hand grasp opening and contact force during stimulation of paralyzed muscle. IEEE Trans Biomed Eng 1991, 38: 17-28. 10.1109/10.68205CrossRefPubMed
3.
go back to reference Popović D, Sinkjær T, Popović M: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation 2009, 25: 45-58.PubMed Popović D, Sinkjær T, Popović M: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation 2009, 25: 45-58.PubMed
4.
go back to reference Micera S, Keller T, Lawrence M, Morari M, Popovic D: Wearable neural prostheses. Eng Med Biol Mag 2010,29(3):64-69.CrossRef Micera S, Keller T, Lawrence M, Morari M, Popovic D: Wearable neural prostheses. Eng Med Biol Mag 2010,29(3):64-69.CrossRef
5.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 2008,16(3):286-297.CrossRefPubMed Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 2008,16(3):286-297.CrossRefPubMed
6.
go back to reference Westerveld AJ, Schouten AC, Veltink PH, van der Kooij H: Selectivity and resolution of surface electrical stimulation for grasp and release. IEEE Trans Neural Syst Rehabil Eng 2012, 20: 94-101.CrossRefPubMed Westerveld AJ, Schouten AC, Veltink PH, van der Kooij H: Selectivity and resolution of surface electrical stimulation for grasp and release. IEEE Trans Neural Syst Rehabil Eng 2012, 20: 94-101.CrossRefPubMed
7.
go back to reference Kaufman K, An K, Litchy W, Cooney W, Chao E, et al.: In-vivo function of the thumb muscles. Clin Biomech 1999,14(2):141-150. 10.1016/S0268-0033(98)00058-8CrossRef Kaufman K, An K, Litchy W, Cooney W, Chao E, et al.: In-vivo function of the thumb muscles. Clin Biomech 1999,14(2):141-150. 10.1016/S0268-0033(98)00058-8CrossRef
8.
go back to reference Pearlman J, Roach S, Valero-Cuevas F: The fundamental thumb-tip force vectors produced by the muscles of the thumb. J Orthop Res 2004,22(2):306-312. 10.1016/j.orthres.2003.08.001CrossRefPubMed Pearlman J, Roach S, Valero-Cuevas F: The fundamental thumb-tip force vectors produced by the muscles of the thumb. J Orthop Res 2004,22(2):306-312. 10.1016/j.orthres.2003.08.001CrossRefPubMed
9.
go back to reference Happee R: Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. J Biomech 1994,27(7):953-960. 10.1016/0021-9290(94)90267-4CrossRefPubMed Happee R: Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. J Biomech 1994,27(7):953-960. 10.1016/0021-9290(94)90267-4CrossRefPubMed
10.
11.
go back to reference Lujan J, Crago P: Automated optimal coordination of multiple-DOF neuromuscular actions in feedforward neuroprostheses. Biomed Eng IEEE Trans 2009, 56: 179-187.CrossRef Lujan J, Crago P: Automated optimal coordination of multiple-DOF neuromuscular actions in feedforward neuroprostheses. Biomed Eng IEEE Trans 2009, 56: 179-187.CrossRef
12.
go back to reference Kuhn A, Keller T, Lawrence M, Morari M: The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. Neural Syst Rehabil Eng IEEE Trans 2010,18(3):255-262.CrossRef Kuhn A, Keller T, Lawrence M, Morari M: The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. Neural Syst Rehabil Eng IEEE Trans 2010,18(3):255-262.CrossRef
13.
go back to reference Seber GAF, Wild CJ: Nonlinear Regression. Hoboken, NJ: Wiley-Interscience; 2003. Seber GAF, Wild CJ: Nonlinear Regression. Hoboken, NJ: Wiley-Interscience; 2003.
14.
go back to reference Ziegler JG, Nichols N: Optimum settings for automatic controllers. Trans ASME 1942, 64: 759-768. Ziegler JG, Nichols N: Optimum settings for automatic controllers. Trans ASME 1942, 64: 759-768.
15.
go back to reference Ferreau H, Bock H, Diehl M: An online active set strategy to overcome the limitations of explicit MPC. Int J Robust Nonlinear Control 2008,18(8):816-830. 10.1002/rnc.1251CrossRef Ferreau H, Bock H, Diehl M: An online active set strategy to overcome the limitations of explicit MPC. Int J Robust Nonlinear Control 2008,18(8):816-830. 10.1002/rnc.1251CrossRef
16.
go back to reference Flanagan JR, Burstedt MK, Johansson RS: Control of fingertip forces in multidigit manipulation. J Neurophysiol 1999,81(4):1706-1717.PubMed Flanagan JR, Burstedt MK, Johansson RS: Control of fingertip forces in multidigit manipulation. J Neurophysiol 1999,81(4):1706-1717.PubMed
17.
go back to reference Singh G, Boddu S, Chakravorty I, Bairy G, Ganesh M: An instrumented glove for monitoring forces during object manipulation. In Point-of-Care Healthc Technol (PHT) IEEE. Bangalore, India: IEEE; 2013:212-215.CrossRef Singh G, Boddu S, Chakravorty I, Bairy G, Ganesh M: An instrumented glove for monitoring forces during object manipulation. In Point-of-Care Healthc Technol (PHT) IEEE. Bangalore, India: IEEE; 2013:212-215.CrossRef
18.
go back to reference Westerveld AJ, Kuck A, Schouten A, Veltink P, van der Kooij H: Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. San Diego, California, USA: IEEE; 2012:333-336.CrossRef Westerveld AJ, Kuck A, Schouten A, Veltink P, van der Kooij H: Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. San Diego, California, USA: IEEE; 2012:333-336.CrossRef
20.
go back to reference Schearer E, Liao Y, Perreault E, Tresch M, KM L: Optimal sampling of recruitment curves for functional electrical stimulation control. In 34th Annual International Conference of the IEEE EMBS. San Diego, California, USA: IEEE; 2012:329-332. Schearer E, Liao Y, Perreault E, Tresch M, KM L: Optimal sampling of recruitment curves for functional electrical stimulation control. In 34th Annual International Conference of the IEEE EMBS. San Diego, California, USA: IEEE; 2012:329-332.
21.
go back to reference Schearer E, Liao YW, Perreault E, Tresch M, Memberg W, Kirsch R, Lynch K: System identification for 3D force control of a human arm neuroprosthesis using functional electrical stimulation. In Robotics and Automation (ICRA), 2012 IEEE International Conference on. St. Paul, Minnesota, USA: IEEE; 2012:3698-3705.CrossRef Schearer E, Liao YW, Perreault E, Tresch M, Memberg W, Kirsch R, Lynch K: System identification for 3D force control of a human arm neuroprosthesis using functional electrical stimulation. In Robotics and Automation (ICRA), 2012 IEEE International Conference on. St. Paul, Minnesota, USA: IEEE; 2012:3698-3705.CrossRef
Metadata
Title
Control of thumb force using surface functional electrical stimulation and muscle load sharing
Authors
Ard J Westerveld
Alfred C Schouten
Peter H Veltink
Herman van der Kooij
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-104

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue