Skip to main content
Top
Published in: BMC Infectious Diseases 1/2023

Open Access 01-12-2023 | Non-Tuberculous Mycobacteria | Case Report

Non-tuberculous mycobacteria lung disease due to Mycobacterium chimaera in a 67-year-old man treated with immune checkpoint inhibitors for lung adenocarcinoma: infection due to dysregulated immunity?

Authors: Cecilia Azzarà, Andrea Lombardi, Andrea Gramegna, Margherita Ori, Andrea Gori, Francesco Blasi, Alessandra Bandera

Published in: BMC Infectious Diseases | Issue 1/2023

Login to get access

Abstract

Immune checkpoint inhibitors (ICIs) are drugs growingly employed in cancer immunotherapy which have significantly improved the prognosis of several tumours. ICIs act by restoring the “exhausted” immune system and increasing the number of T cells active against pathogens losing tolerogenic signalling, which has been linked to an increased risk of infectious events. We present the case of a 67-year-old man with locally advanced lung adenocarcinoma treated with the anti-PD-L1 durvalumab. Three months after immunotherapy started, an apparent radiological progression was found with elements suggesting a parenchymal superinfection associated with weight loss, asthenia, and sputum emission. A bronchoalveolar lavage resulted positive for Mycobacterium chimaera, and treatment with amikacin iv (for eight weeks) and daily azithromycin, ethambutol, and rifampicin was started. Thirteen months after treatment started, the patient is alive with a stable lung condition. The case highlights the risk of non-tuberculous mycobacteria lung disease (NTM-LD) in patients receiving ICIs treatment. We hypothesise that durvalumab induced an exaggerated immune response toward the mycobacteria, leading to immunopathology and overt clinical manifestations. Clinicians should be aware of this possibility in patients receiving ICIs developing new signs/symptoms related to the respiratory tract, especially in countries with a high prevalence of NTM-LD.
Literature
1.
go back to reference Amelio P, Portevin D, Hella J et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. Silvestri G, editor. J Virol. 2019; 93(5). Amelio P, Portevin D, Hella J et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. Silvestri G, editor. J Virol. 2019; 93(5).
2.
go back to reference Wherry EJ. T cell exhaustion. Nat Immunol Nature Publishing Group. 2011;12(6):492–9.CrossRef Wherry EJ. T cell exhaustion. Nat Immunol Nature Publishing Group. 2011;12(6):492–9.CrossRef
3.
go back to reference Morelli T, Fujita K, Redelman-Sidi G, Elkington PT. Infections due to dysregulated immunity: an emerging complication of cancer immunotherapy. Thorax. 2022;77(3):304–11.CrossRefPubMed Morelli T, Fujita K, Redelman-Sidi G, Elkington PT. Infections due to dysregulated immunity: an emerging complication of cancer immunotherapy. Thorax. 2022;77(3):304–11.CrossRefPubMed
4.
go back to reference Kauffman KD, Sakai S, Lora NE et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol. 2021; 6(55). Kauffman KD, Sakai S, Lora NE et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol. 2021; 6(55).
5.
go back to reference Gramegna A, Lombardi A, Lorè NI, et al. Innate and adaptive lymphocytes in non-tuberculous mycobacteria lung disease: a review. Front Immunol. 2022;13(June):1–9. Gramegna A, Lombardi A, Lorè NI, et al. Innate and adaptive lymphocytes in non-tuberculous mycobacteria lung disease: a review. Front Immunol. 2022;13(June):1–9.
6.
go back to reference Lombardi A, Gramegna A, Ori M, Azzarà C, Blasi F, Gori A. Non-tuberculous mycobacterial infections during cancer therapy with immune checkpoint inhibitors: a systematic review. ERJ Open Res. 2022;:00364–2022. Lombardi A, Gramegna A, Ori M, Azzarà C, Blasi F, Gori A. Non-tuberculous mycobacterial infections during cancer therapy with immune checkpoint inhibitors: a systematic review. ERJ Open Res. 2022;:00364–2022.
7.
go back to reference Pan SW, Shu CC, Feng JY, et al. Impact of different subspecies on disease progression in initially untreated patients with Mycobacterium avium complex lung disease. Clin Microbiol Infect. 2021;27(3):467e9–14.CrossRef Pan SW, Shu CC, Feng JY, et al. Impact of different subspecies on disease progression in initially untreated patients with Mycobacterium avium complex lung disease. Clin Microbiol Infect. 2021;27(3):467e9–14.CrossRef
8.
go back to reference Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191(11):1310–7.CrossRefPubMed Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191(11):1310–7.CrossRefPubMed
9.
go back to reference Fujita K, Yamamoto Y, Kanai O, Okamura M, Nakatani K, Mio T. Development of Mycobacterium avium Complex Lung Disease in patients with Lung Cancer on Immune Checkpoint inhibitors. Open forum Infect Dis. 2020;7(3):ofaa067.CrossRefPubMedPubMedCentral Fujita K, Yamamoto Y, Kanai O, Okamura M, Nakatani K, Mio T. Development of Mycobacterium avium Complex Lung Disease in patients with Lung Cancer on Immune Checkpoint inhibitors. Open forum Infect Dis. 2020;7(3):ofaa067.CrossRefPubMedPubMedCentral
10.
go back to reference Anand K, Sahu G, Burns E, et al. Mycobacterial infections due to PD-1 and PD-L1 checkpoint inhibitors. ESMO Open Elsevier Masson SAS. 2020;5(4):e000866.CrossRef Anand K, Sahu G, Burns E, et al. Mycobacterial infections due to PD-1 and PD-L1 checkpoint inhibitors. ESMO Open Elsevier Masson SAS. 2020;5(4):e000866.CrossRef
11.
go back to reference Daley CL, Iaccarino JM, Lange C, et al. Treatment of non-tuberculous mycobacterial pulmonary disease: an official ats/ers/escmid/idsa clinical practice guideline. Clin Infect Dis. 2020;71(4):E1–E36.CrossRefPubMedPubMedCentral Daley CL, Iaccarino JM, Lange C, et al. Treatment of non-tuberculous mycobacterial pulmonary disease: an official ats/ers/escmid/idsa clinical practice guideline. Clin Infect Dis. 2020;71(4):E1–E36.CrossRefPubMedPubMedCentral
Metadata
Title
Non-tuberculous mycobacteria lung disease due to Mycobacterium chimaera in a 67-year-old man treated with immune checkpoint inhibitors for lung adenocarcinoma: infection due to dysregulated immunity?
Authors
Cecilia Azzarà
Andrea Lombardi
Andrea Gramegna
Margherita Ori
Andrea Gori
Francesco Blasi
Alessandra Bandera
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2023
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-023-08537-w

Other articles of this Issue 1/2023

BMC Infectious Diseases 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine