Skip to main content
Top
Published in: Angiogenesis 1/2014

01-01-2014 | Original Paper

Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF–NGR using multi-modal imaging

Authors: Thorsten Persigehl, Janine Ring, Christoph Bremer, Walter Heindel, Richard Holtmeier, Jörg Stypmann, Michael Claesener, Sven Hermann, Michael Schäfers, Caroline Zerbst, Christoph Schliemann, Rolf M. Mesters, Wolfgang E. Berdel, Christian Schwöppe

Published in: Angiogenesis | Issue 1/2014

Login to get access

Abstract

The fusion protein tTF–NGR consists of the extracellular domain of the thrombogenic human tissue factor (truncated tissue factor, tTF) and the peptide GNGRAHA (NGR), a ligand of the surface protein CD13 (aminopeptidase N), upregulated on endothelial cells of tumor vessels. tTF–NGR preferentially activates blood coagulation within tumor vasculature, resulting in tumor vessel infarction and subsequent tumor growth retardation/regression. The anti-vascular mechanism of the tTF–NGR therapy approach was verified by quantifying the reduced tumor blood-perfusion with contrast-enhanced ultrasound, the reduced relative tumor blood volume by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging, and by in vivo-evaluation of hemorrhagic bleeding with fluorescent biomarkers (AngioSense680) in fluorescence reflectance imaging. The accumulation of tTF–NGR within the tumor was proven by visualizing the distribution of the iodine-123-labelled protein by single-photon emission computed tomography. Use of these multi-modal vascular and molecular imaging tools helped to assess the therapeutic effect even at real time and to detect non-responding tumors directly after the first tTF–NGR treatment. This emphasizes the importance of imaging within clinical studies with tTF–NGR. The imaging techniques as used here have applicability within a wider scope of therapeutic regimes interfering with tumor vasculature. Some even are useful to obtain predictive biosignals in personalized cancer treatment.
Literature
1.
2.
go back to reference Kessler T, Bayer M, Schwöppe C, Liersch R, Mesters RM, Berdel WE (2010) Compounds in clinical Phase III and beyond. Recent Results Cancer Res 180:137–163PubMedCrossRef Kessler T, Bayer M, Schwöppe C, Liersch R, Mesters RM, Berdel WE (2010) Compounds in clinical Phase III and beyond. Recent Results Cancer Res 180:137–163PubMedCrossRef
3.
go back to reference Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307PubMedCrossRef Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307PubMedCrossRef
4.
go back to reference Blankenberg FG, Levashova Z, Goris MG, Hamby CV, Backer MV, Backer JM (2011) Targeted systemic radiotherapy with scVEGF/177Lu leads to sustained disruption of the tumor vasculature and intratumoral apoptosis. J Nucl Med 52(10):1630–1637PubMedCrossRef Blankenberg FG, Levashova Z, Goris MG, Hamby CV, Backer MV, Backer JM (2011) Targeted systemic radiotherapy with scVEGF/177Lu leads to sustained disruption of the tumor vasculature and intratumoral apoptosis. J Nucl Med 52(10):1630–1637PubMedCrossRef
5.
go back to reference Mohamedali KA, Niu G, Luster TA, Thorpe PE, Gao H, Chen X, Rosenblum MG (2012) Pharmacodynamics, tissue distribution, toxicity studies and antitumor efficacy of the vascular targeting fusion toxin VEGF121/rGel. Biochem Pharmacol 84(11):1534–1540PubMedCrossRef Mohamedali KA, Niu G, Luster TA, Thorpe PE, Gao H, Chen X, Rosenblum MG (2012) Pharmacodynamics, tissue distribution, toxicity studies and antitumor efficacy of the vascular targeting fusion toxin VEGF121/rGel. Biochem Pharmacol 84(11):1534–1540PubMedCrossRef
6.
go back to reference Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha V beta 3 for angiogenesis. Science 264:569–571PubMedCrossRef Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha V beta 3 for angiogenesis. Science 264:569–571PubMedCrossRef
7.
go back to reference Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59:2869–2874PubMed Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59:2869–2874PubMed
8.
go back to reference Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108(3):1139–1148PubMedCrossRef Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108(3):1139–1148PubMedCrossRef
9.
go back to reference Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874PubMed Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874PubMed
10.
go back to reference Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMed Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMed
11.
go back to reference Felding-Habermann B, Ruggeri ZM, Cheresh DA (1992) Distinct biological consequences of integrin alpha v beta 3-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. J Biol Chem 267(8):5070–5077PubMed Felding-Habermann B, Ruggeri ZM, Cheresh DA (1992) Distinct biological consequences of integrin alpha v beta 3-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. J Biol Chem 267(8):5070–5077PubMed
12.
go back to reference Kessler TA, Pfeifer A, Silletti S, Mesters RM, Berdel WE, Verma I, Cheresh D (2002) Matrix metalloproteinase/integrin interactions as target for anti-angiogenic treatment strategies. Ann Hematol 8(Suppl. 2):S69–S70 Kessler TA, Pfeifer A, Silletti S, Mesters RM, Berdel WE, Verma I, Cheresh D (2002) Matrix metalloproteinase/integrin interactions as target for anti-angiogenic treatment strategies. Ann Hematol 8(Suppl. 2):S69–S70
13.
go back to reference Kessler T, Fehrmann F, Bieker R, Berdel WE, Mesters RM (2007) Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets 8:257–268PubMedCrossRef Kessler T, Fehrmann F, Bieker R, Berdel WE, Mesters RM (2007) Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets 8:257–268PubMedCrossRef
14.
go back to reference Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoshlahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727PubMed Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoshlahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727PubMed
15.
go back to reference Pfeifer A, Kessler T, Silletti S, Cheresh DA, Verma IM (2000) Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc Natl Acad Sci 97(22):12227–12232PubMedCrossRef Pfeifer A, Kessler T, Silletti S, Cheresh DA, Verma IM (2000) Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc Natl Acad Sci 97(22):12227–12232PubMedCrossRef
16.
go back to reference Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ (1992) Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci 89:10832–10836PubMedCrossRef Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ (1992) Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci 89:10832–10836PubMedCrossRef
17.
go back to reference Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380PubMedCrossRef Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380PubMedCrossRef
18.
go back to reference Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038PubMedCrossRef Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038PubMedCrossRef
19.
go back to reference Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407PubMedCrossRef Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407PubMedCrossRef
20.
go back to reference Ruoslahti E (2000) Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10:435–442PubMedCrossRef Ruoslahti E (2000) Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10:435–442PubMedCrossRef
21.
22.
go back to reference Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874PubMed Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874PubMed
23.
go back to reference Pastorino F, Brignole C, Marimpietri D, Cilli M, Gambini C, Ribatti D, Longhi R, Allen TM, Corti A, Ponzoni M (2003) Cancer Res 63(21):7400–7409PubMed Pastorino F, Brignole C, Marimpietri D, Cilli M, Gambini C, Ribatti D, Longhi R, Allen TM, Corti A, Ponzoni M (2003) Cancer Res 63(21):7400–7409PubMed
24.
go back to reference Sacchi A, Gasparri A, Curnis F, Bellone M, Corti A (2004) Crucial role for interferon gamma in the synergism between tumor vasculature-targeted tumor necrosis factor alpha (NGR-TNF) and doxorubicin. Cancer Res 64(19):7150–7155PubMedCrossRef Sacchi A, Gasparri A, Curnis F, Bellone M, Corti A (2004) Crucial role for interferon gamma in the synergism between tumor vasculature-targeted tumor necrosis factor alpha (NGR-TNF) and doxorubicin. Cancer Res 64(19):7150–7155PubMedCrossRef
25.
go back to reference Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A (2006) Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clin Cancer Res 12(1):175–182PubMedCrossRef Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A (2006) Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clin Cancer Res 12(1):175–182PubMedCrossRef
26.
go back to reference van Laarhoven HW, Gambarota G, Heerschap A, Lok J, Verhagen I, Corti A, Toma S, Gallo Stampino C, van der Kogel A, Punt CJ (2006) Effects of the tumor vasculature targeting agent NGR-TNF on the tumor microenvironment in murine lymphomas. Invest New Drugs 24(1):27–36PubMedCrossRef van Laarhoven HW, Gambarota G, Heerschap A, Lok J, Verhagen I, Corti A, Toma S, Gallo Stampino C, van der Kogel A, Punt CJ (2006) Effects of the tumor vasculature targeting agent NGR-TNF on the tumor microenvironment in murine lymphomas. Invest New Drugs 24(1):27–36PubMedCrossRef
27.
go back to reference Di Matteo P, Curnis F, Longhi R, Colombo G, Sacchi A, Crippa L, Protti MP, Ponzoni M, Toma S, Corti A (2006) Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Mol Immunol 43(10):1509–1518PubMedCrossRef Di Matteo P, Curnis F, Longhi R, Colombo G, Sacchi A, Crippa L, Protti MP, Ponzoni M, Toma S, Corti A (2006) Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Mol Immunol 43(10):1509–1518PubMedCrossRef
28.
go back to reference Morrissey JH, Macik BG, Neuenschwander PF, Comp PC (1993) Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81:734–744PubMed Morrissey JH, Macik BG, Neuenschwander PF, Comp PC (1993) Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81:734–744PubMed
29.
go back to reference Kessler T, Bieker R, Padró T, Schwöppe C, Persigehl T, Bremer C, Kreuter M, Berdel WE, Mesters RM (2005) Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin Cancer Res 11:6317–6324PubMedCrossRef Kessler T, Bieker R, Padró T, Schwöppe C, Persigehl T, Bremer C, Kreuter M, Berdel WE, Mesters RM (2005) Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin Cancer Res 11:6317–6324PubMedCrossRef
30.
go back to reference Kessler T, Schwöppe C, Liersch R, Schliemann C, Hintelmann H, Bieker R, Berdel WE, Mesters RM (2008) Generation of fusion proteins for selective occlusion of tumor vessels. Curr Drug Discov Technol 5:1–8PubMedCrossRef Kessler T, Schwöppe C, Liersch R, Schliemann C, Hintelmann H, Bieker R, Berdel WE, Mesters RM (2008) Generation of fusion proteins for selective occlusion of tumor vessels. Curr Drug Discov Technol 5:1–8PubMedCrossRef
31.
go back to reference Bieker R, Kessler T, Schwöppe C, Padró T, Persigehl T, Bremer C, Dreischalück J, Kolkmeyer A, Heindel W, Mesters RM, Berdel WE (2009) Infarction of tumor vessels by NGR-peptide directed targeting of tissue factor. Experimental results and first-in-man experience. Blood 113:5019–5027PubMedCrossRef Bieker R, Kessler T, Schwöppe C, Padró T, Persigehl T, Bremer C, Dreischalück J, Kolkmeyer A, Heindel W, Mesters RM, Berdel WE (2009) Infarction of tumor vessels by NGR-peptide directed targeting of tissue factor. Experimental results and first-in-man experience. Blood 113:5019–5027PubMedCrossRef
32.
go back to reference Schwöppe C, Kessler T, Persigehl T, Liersch R, Hintelmann H, Dreischalück J, Ring J, Bremer C, Heindel W, Mesters RM, Berdel WE (2010) Tissue-factor fusion proteins induce occlusion of tumor vessels. Thromb Res 125(Suppl. 2):S143–S150PubMedCrossRef Schwöppe C, Kessler T, Persigehl T, Liersch R, Hintelmann H, Dreischalück J, Ring J, Bremer C, Heindel W, Mesters RM, Berdel WE (2010) Tissue-factor fusion proteins induce occlusion of tumor vessels. Thromb Res 125(Suppl. 2):S143–S150PubMedCrossRef
33.
go back to reference Nilsson F, Kosmehl H, Zardi L, Neri D (2001) Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 61:711–716PubMed Nilsson F, Kosmehl H, Zardi L, Neri D (2001) Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 61:711–716PubMed
34.
go back to reference Liu C, Huang H, Donate F, Dickinson C, Santucci R, El-Sheikh A, Vessella R, Edgington TS (2002) Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer Res 62:5470–5475PubMed Liu C, Huang H, Donate F, Dickinson C, Santucci R, El-Sheikh A, Vessella R, Edgington TS (2002) Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer Res 62:5470–5475PubMed
35.
go back to reference Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE (1998) Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 58:4646–4653PubMed Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE (1998) Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 58:4646–4653PubMed
36.
go back to reference Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275:547–550PubMedCrossRef Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275:547–550PubMedCrossRef
37.
go back to reference Persigehl T, Wall A, Kellert J, Ring J, Remmele S, Heindel W, Dahnke H, Bremer C (2010) Tumor blood volume determination by using susceptibility-corrected ∆R2* multiecho MR. Radiology 255(3):781–789PubMedCrossRef Persigehl T, Wall A, Kellert J, Ring J, Remmele S, Heindel W, Dahnke H, Bremer C (2010) Tumor blood volume determination by using susceptibility-corrected ∆R2* multiecho MR. Radiology 255(3):781–789PubMedCrossRef
38.
go back to reference Dreischalück J, Schwöppe C, Spieker T, Kessler T, Tiemann K, Liersch R, Schliemann C, Kreuter M, Kolkmeyer A, Hintelmann H, Mesters RM, Berdel WE (2010) Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: activity and toxicity profile. Int J Oncol 37:1389–1397PubMed Dreischalück J, Schwöppe C, Spieker T, Kessler T, Tiemann K, Liersch R, Schliemann C, Kreuter M, Kolkmeyer A, Hintelmann H, Mesters RM, Berdel WE (2010) Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: activity and toxicity profile. Int J Oncol 37:1389–1397PubMed
39.
go back to reference Von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10:545–552CrossRef Von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10:545–552CrossRef
40.
go back to reference Schwöppe C, Zerbst C, Fröhlich M, Schliemann C, Kessler T, Liersch R, Overkamp L, Holtmeier R, Stypmann J, Dreiling A, König S, Höltke C, Lücke M, Müller-Tidow C, Mesters RM, Berdel WE (2013) Anticancer therapy by tumor vessel infarction with polyethylene glycol conjugated retargeted tissue factor. J Med Chem 56(6):2337–2347PubMedCrossRef Schwöppe C, Zerbst C, Fröhlich M, Schliemann C, Kessler T, Liersch R, Overkamp L, Holtmeier R, Stypmann J, Dreiling A, König S, Höltke C, Lücke M, Müller-Tidow C, Mesters RM, Berdel WE (2013) Anticancer therapy by tumor vessel infarction with polyethylene glycol conjugated retargeted tissue factor. J Med Chem 56(6):2337–2347PubMedCrossRef
41.
go back to reference Bailey GS (1994) Labeling of peptides and proteins by radioiodination. Methods Mol Biol 32:441–448PubMed Bailey GS (1994) Labeling of peptides and proteins by radioiodination. Methods Mol Biol 32:441–448PubMed
42.
go back to reference Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40(6):793–799PubMedCrossRef Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40(6):793–799PubMedCrossRef
43.
go back to reference Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P (2002) Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology 223(2):432–438PubMedCrossRef Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P (2002) Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology 223(2):432–438PubMedCrossRef
44.
go back to reference Zhu H, Melder RJ, Baxter LT, Jain RK (1996) Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive immunotherapy. Cancer Res 56(16):3771–3781PubMed Zhu H, Melder RJ, Baxter LT, Jain RK (1996) Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive immunotherapy. Cancer Res 56(16):3771–3781PubMed
45.
go back to reference Lohmaier S, Ghanem A, Veltmann C, Sommer T, Bruce M, Tiemann K (2004) In vitro and in vivo studies on continuous echo-contrast application strategies using SonoVue in a newly developed rotating pump setup. Ultrasound Med Biol 30:1145–1151PubMedCrossRef Lohmaier S, Ghanem A, Veltmann C, Sommer T, Bruce M, Tiemann K (2004) In vitro and in vivo studies on continuous echo-contrast application strategies using SonoVue in a newly developed rotating pump setup. Ultrasound Med Biol 30:1145–1151PubMedCrossRef
46.
go back to reference Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijmann H, Meier N, Ebert W, Berdel WE, Heindel W, Mesters RM, Bremer C (2007) Antiangiogenic tumor treatment: early non-invasive monitoring with USPIO-enhanced MR Imaging in mice. Radiology 244(2):449–456PubMedCrossRef Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijmann H, Meier N, Ebert W, Berdel WE, Heindel W, Mesters RM, Bremer C (2007) Antiangiogenic tumor treatment: early non-invasive monitoring with USPIO-enhanced MR Imaging in mice. Radiology 244(2):449–456PubMedCrossRef
47.
go back to reference Von Wallbrunn A, Waldeck J, Höltke C, Zühlsdorf M, Mesters RM, Heindel W, Schäfers M, Bremer C (2008) In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Opt 13(1):011007CrossRef Von Wallbrunn A, Waldeck J, Höltke C, Zühlsdorf M, Mesters RM, Heindel W, Schäfers M, Bremer C (2008) In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Opt 13(1):011007CrossRef
48.
49.
go back to reference Nielsen T, Bentzen L, Pedersen M et al (2012) Combretastatin A-4 phosphate affects tumor vessel volume and size distribution as assessed using MRI-based vessel size imaging. Clin Cancer Res 18(23):6469–6477PubMedCrossRef Nielsen T, Bentzen L, Pedersen M et al (2012) Combretastatin A-4 phosphate affects tumor vessel volume and size distribution as assessed using MRI-based vessel size imaging. Clin Cancer Res 18(23):6469–6477PubMedCrossRef
51.
go back to reference Shenoi MM, Iltis I, Choi J, et al. (2013) Nanoparticle Delivered Vascular Disrupting Agents (VDAs): Use of TNF-alpha conjugated Gold Nanoparticles for Multimodal Cancer Therapy. Mol Pharm. doi:10.1021/mp300505w Shenoi MM, Iltis I, Choi J, et al. (2013) Nanoparticle Delivered Vascular Disrupting Agents (VDAs): Use of TNF-alpha conjugated Gold Nanoparticles for Multimodal Cancer Therapy. Mol Pharm. doi:10.​1021/​mp300505w
52.
go back to reference Wang H, Sun X, Chen F et al (2009) Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Invest Radiol 44(1):44–53PubMedCrossRef Wang H, Sun X, Chen F et al (2009) Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Invest Radiol 44(1):44–53PubMedCrossRef
53.
go back to reference Bohndiek SE, Kettunen MI, Hu DE et al (2010) Detection of tumor response to a vascular disrupting agent by hyperpolarized 13C magnetic resonance spectroscopy. Mol Cancer Ther 9(12):3278–3288PubMedCentralPubMedCrossRef Bohndiek SE, Kettunen MI, Hu DE et al (2010) Detection of tumor response to a vascular disrupting agent by hyperpolarized 13C magnetic resonance spectroscopy. Mol Cancer Ther 9(12):3278–3288PubMedCentralPubMedCrossRef
Metadata
Title
Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF–NGR using multi-modal imaging
Authors
Thorsten Persigehl
Janine Ring
Christoph Bremer
Walter Heindel
Richard Holtmeier
Jörg Stypmann
Michael Claesener
Sven Hermann
Michael Schäfers
Caroline Zerbst
Christoph Schliemann
Rolf M. Mesters
Wolfgang E. Berdel
Christian Schwöppe
Publication date
01-01-2014
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2014
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-013-9391-4

Other articles of this Issue 1/2014

Angiogenesis 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.