Skip to main content
Top
Published in: Strahlentherapie und Onkologie 9/2018

01-09-2018 | Original Article

Non-coplanar VMAT combined with non-uniform dose prescription markedly reduces lung dose in breath-hold lung SBRT

Authors: Dr. Jens Fleckenstein, Judit Boda-Heggemann, Kerstin Siebenlist, Tanya Gudzheva, Natallia Prakofyeva, Frank Lohr, Frederik Wenz, Anna Simeonova-Chergou

Published in: Strahlentherapie und Onkologie | Issue 9/2018

Login to get access

Abstract

Background and purpose

In this retrospective treatment planning study, the effect of a uniform and non-uniform planning target volume (PTV) dose coverage as well as a coplanar and non-coplanar volumetric modulated arc therapy (VMAT) delivery approach for lung stereotactic body radiation therapy (SBRT) in deep inspiration breath-hold (DIBH) were compared.

Materials and methods

For 46 patients with lesions in the peripheral lungs, three different treatment plans were generated: First, a coplanar 220° VMAT sequence with a uniform PTV dose prescription (UC). Second, a coplanar 220° VMAT treatment plan with a non-uniform dose distribution in the PTV (nUC). Third, a non-coplanar VMAT dose delivery with four couch angles (0°, ±35°, 90°) and a non-uniform prescription (nUnC) was used. All treatment plans were optimized for pareto-optimality with respect to PTV coverage and ipsilateral lung dose. Treatment sequences were delivered on a flattening-filter-free linear accelerator and beam-on times were recorded. Dosimetric comparison between the three techniques was performed.

Results

For the three scenarios (UC, nUC, nUnC), median gross tumor volume (GTV) doses were 63.4 ± 2.5, 74.4 ± 3.6, and 77.9 ± 3.8 Gy, and ipsilateral V10Gy lung volumes were 15.7 ± 6.1, 13.9 ± 4.7, and 12.0 ± 5.1%, respectively. Normal tissue complication probability of the ipsilateral lung was 3.9, 3.1, and 2.8%, respectively. The number of monitor units were 5141 ± 1174, 4104 ± 786, and 3657 ± 710 MU and the corresponding beam-on times were 177 ± 54, 143 ± 29, and 148 ± 26 s.

Conclusion

For SBRT treatments in DIBH, a non-uniform dose prescription in the PTV, combined with a non-coplanar VMAT arc arrangement, significantly spares the ipsilateral lung while increasing dose to the GTV without major treatment time increase.
Literature
1.
go back to reference Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190:26–33CrossRefPubMed Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190:26–33CrossRefPubMed
2.
go back to reference Rieber J, Streblow J, Uhlmann L et al (2016) Stereotactic body radiotherapy (SBRT) for medically inoperable lung metastases—a pooled analysis of the German working group stereotactic radiotherapy. Lung Cancer 97:51–58CrossRefPubMed Rieber J, Streblow J, Uhlmann L et al (2016) Stereotactic body radiotherapy (SBRT) for medically inoperable lung metastases—a pooled analysis of the German working group stereotactic radiotherapy. Lung Cancer 97:51–58CrossRefPubMed
4.
go back to reference Guckenberger M, Andratschke N, Dieckmann K (2017) ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol 124:11–17CrossRefPubMed Guckenberger M, Andratschke N, Dieckmann K (2017) ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol 124:11–17CrossRefPubMed
5.
go back to reference Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193:780–790CrossRefPubMed Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193:780–790CrossRefPubMed
6.
go back to reference Guckenberger M (2017) Stereotactic body radiotherapy for early stage NSCLC—what is the evidence? Zentralbl Chir 142(S 01):17–S25CrossRef Guckenberger M (2017) Stereotactic body radiotherapy for early stage NSCLC—what is the evidence? Zentralbl Chir 142(S 01):17–S25CrossRef
7.
go back to reference Chang JY, Senan S, Paul MA et al (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16:630–637CrossRefPubMedPubMedCentral Chang JY, Senan S, Paul MA et al (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16:630–637CrossRefPubMedPubMedCentral
8.
go back to reference Ricardi U, Badellino S, Filippi AR (2015) Stereotactic radiotherapy for early stage non-small cell lung cancer. Radiat Oncol 33:57–65CrossRef Ricardi U, Badellino S, Filippi AR (2015) Stereotactic radiotherapy for early stage non-small cell lung cancer. Radiat Oncol 33:57–65CrossRef
9.
go back to reference Soldà F, Lodge M, Ashley S et al (2013) Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort. Radiother Oncol 109:1–7CrossRefPubMed Soldà F, Lodge M, Ashley S et al (2013) Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort. Radiother Oncol 109:1–7CrossRefPubMed
10.
go back to reference Yu XJ, Dai WR, Xu Y (2017) Survival outcome after stereotactic body radiation therapy and surgery for early stage non-small cell lung cancer: a meta-analysis. J Invest Surg 22:1–8CrossRef Yu XJ, Dai WR, Xu Y (2017) Survival outcome after stereotactic body radiation therapy and surgery for early stage non-small cell lung cancer: a meta-analysis. J Invest Surg 22:1–8CrossRef
11.
go back to reference Ramroth J, Cutter DJ, Darby SC et al (2016) Dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer: meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys 96:736–747CrossRefPubMedPubMedCentral Ramroth J, Cutter DJ, Darby SC et al (2016) Dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer: meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys 96:736–747CrossRefPubMedPubMedCentral
12.
go back to reference De Ruysscher D, Faivre-Finn C, Moeller D (2017) European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124:1–10CrossRefPubMed De Ruysscher D, Faivre-Finn C, Moeller D (2017) European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124:1–10CrossRefPubMed
13.
go back to reference Keall PJ, Mageras GS, Balter JM et al (2006) AAPM report no. 91 the management of respiratory motion in radiation oncology. Med Phys 33:3874–3900CrossRefPubMed Keall PJ, Mageras GS, Balter JM et al (2006) AAPM report no. 91 the management of respiratory motion in radiation oncology. Med Phys 33:3874–3900CrossRefPubMed
14.
go back to reference Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of the AAPM ask Group 101. Med Phys 37:4078–4101CrossRefPubMed Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of the AAPM ask Group 101. Med Phys 37:4078–4101CrossRefPubMed
16.
go back to reference Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94:478–492CrossRefPubMed Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94:478–492CrossRefPubMed
17.
go back to reference Giraud P, Morvan E, Claude L et al (2011) Respiratory gating techniques for optimization of lung cancer radiotherapy. J Thorac Oncol 6:2058–2068CrossRefPubMed Giraud P, Morvan E, Claude L et al (2011) Respiratory gating techniques for optimization of lung cancer radiotherapy. J Thorac Oncol 6:2058–2068CrossRefPubMed
18.
go back to reference Caillet V, Keall PJ, Colvill E et al (2017) MLC tracking for lung SABR reduces planning target volumes and dose to organs at risk. Radiother Oncol 124:18–24CrossRefPubMed Caillet V, Keall PJ, Colvill E et al (2017) MLC tracking for lung SABR reduces planning target volumes and dose to organs at risk. Radiother Oncol 124:18–24CrossRefPubMed
19.
go back to reference Stera S, Balermpas P, Chan MKH et al (2018) Breathing-motion-compensated robotic guided stereotactic body radiation therapy : patterns of failure analysis. Strahlenther Onkol 194:143–155CrossRefPubMed Stera S, Balermpas P, Chan MKH et al (2018) Breathing-motion-compensated robotic guided stereotactic body radiation therapy : patterns of failure analysis. Strahlenther Onkol 194:143–155CrossRefPubMed
20.
go back to reference Temming S, Kocher M, Stoelben E et al (2018) Risk-adapted robotic stereotactic body radiation therapy for inoperable early-stage non-small-cell lung cancer. Strahlenther Onkol 194:91–97CrossRefPubMed Temming S, Kocher M, Stoelben E et al (2018) Risk-adapted robotic stereotactic body radiation therapy for inoperable early-stage non-small-cell lung cancer. Strahlenther Onkol 194:91–97CrossRefPubMed
21.
go back to reference Fitzgerald R, Owen R, Barry T et al (2016) The effect of beam arrangements and the impact of non-coplanar beams on the treatment planning of stereotactic ablative radiation therapy for early stage lung cancer. J Med Radiat Sci 63:31–40CrossRefPubMed Fitzgerald R, Owen R, Barry T et al (2016) The effect of beam arrangements and the impact of non-coplanar beams on the treatment planning of stereotactic ablative radiation therapy for early stage lung cancer. J Med Radiat Sci 63:31–40CrossRefPubMed
22.
go back to reference Sheng K, Shepard DM (2015) Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys 42:531–533CrossRefPubMed Sheng K, Shepard DM (2015) Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys 42:531–533CrossRefPubMed
23.
go back to reference Dong P, Lee P, Ruan D (2013) 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol Biol Phys 86:407–413CrossRefPubMed Dong P, Lee P, Ruan D (2013) 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol Biol Phys 86:407–413CrossRefPubMed
24.
go back to reference International Commission on Radiation Units and Measurements (1993) ICRU report 50: prescribing, recording and reporting photon-beam therapy International Commission on Radiation Units and Measurements (1993) ICRU report 50: prescribing, recording and reporting photon-beam therapy
25.
go back to reference Gregoire V, Mackie TR, De Neuve W et al (2010) ICRU report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 10:1–106 Gregoire V, Mackie TR, De Neuve W et al (2010) ICRU report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 10:1–106
27.
28.
go back to reference Boda-Heggemann J, Mai S, Fleckenstein J et al (2013) Flattening-filter-free intensity modulated breath-hold image-guided SABR (Stereotactic ABlative Radiotherapy) can be applied in a 15-min treatment slot. Radiother Oncol 109:505–509CrossRefPubMed Boda-Heggemann J, Mai S, Fleckenstein J et al (2013) Flattening-filter-free intensity modulated breath-hold image-guided SABR (Stereotactic ABlative Radiotherapy) can be applied in a 15-min treatment slot. Radiother Oncol 109:505–509CrossRefPubMed
30.
go back to reference Marks LB, Bentzen SM, Deasy JO (2010) Radiation dose-volume effects in the lung. Int J Rad Onc Biol Phys 76:S70–S76CrossRef Marks LB, Bentzen SM, Deasy JO (2010) Radiation dose-volume effects in the lung. Int J Rad Onc Biol Phys 76:S70–S76CrossRef
31.
go back to reference Li XA, Alber M, Deasy JO et al (2012) AAPM report 166: the use and QA of biologically related models for treatment planning. Med Phys 39:1386–1409CrossRef Li XA, Alber M, Deasy JO et al (2012) AAPM report 166: the use and QA of biologically related models for treatment planning. Med Phys 39:1386–1409CrossRef
32.
go back to reference Semenenko VA, Li XA (2008) Lyman–Kutcher–Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys Med Biol 53:737CrossRefPubMed Semenenko VA, Li XA (2008) Lyman–Kutcher–Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys Med Biol 53:737CrossRefPubMed
33.
go back to reference Borst GR, Ishikawa M, Nijkamp J et al (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603CrossRefPubMed Borst GR, Ishikawa M, Nijkamp J et al (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603CrossRefPubMed
34.
go back to reference Fleckenstein J, Jahnke L, Lohr F et al (2013) Development of a Geant4 based Monte Carlo Algorithm to evaluate the MONACO VMAT treatment accuracy. Z Med Phys 23:33–45CrossRefPubMed Fleckenstein J, Jahnke L, Lohr F et al (2013) Development of a Geant4 based Monte Carlo Algorithm to evaluate the MONACO VMAT treatment accuracy. Z Med Phys 23:33–45CrossRefPubMed
35.
go back to reference Craft D, Khan F, Young M, Bortfeld T (2016) The price of target dose uniformity. Int J Radiat Oncol Biol Phys 96:913–914CrossRefPubMed Craft D, Khan F, Young M, Bortfeld T (2016) The price of target dose uniformity. Int J Radiat Oncol Biol Phys 96:913–914CrossRefPubMed
36.
go back to reference Sheng K, Shepard DM (2015) Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys 42:531–533CrossRefPubMed Sheng K, Shepard DM (2015) Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys 42:531–533CrossRefPubMed
37.
go back to reference Hepp R, Ammerpohl M, Morgenstern C et al (2015) Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer: dosimetrical comparison and clinical feasibility in 20 patients. Strahlenther Onkol 191:710–716CrossRefPubMed Hepp R, Ammerpohl M, Morgenstern C et al (2015) Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer: dosimetrical comparison and clinical feasibility in 20 patients. Strahlenther Onkol 191:710–716CrossRefPubMed
38.
go back to reference de Pooter JA, Méndez Romero A, Wunderink W et al (2015) Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis. Radiother Oncol 88:376–381CrossRef de Pooter JA, Méndez Romero A, Wunderink W et al (2015) Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis. Radiother Oncol 88:376–381CrossRef
39.
go back to reference Gala DG, Dirkx MLP, Hoekstra N et al (2017) Fully automated VMAT treatment planning for advanced-stage NSCLC patients. Strahlenther Onkol 193:402–409CrossRefPubMedPubMedCentral Gala DG, Dirkx MLP, Hoekstra N et al (2017) Fully automated VMAT treatment planning for advanced-stage NSCLC patients. Strahlenther Onkol 193:402–409CrossRefPubMedPubMedCentral
40.
go back to reference Willner J, Jost A, Baier K, Flentje M (2003) A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3‑D conformal radiotherapy. Strahlenther Onkol 179:548–556CrossRefPubMed Willner J, Jost A, Baier K, Flentje M (2003) A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3‑D conformal radiotherapy. Strahlenther Onkol 179:548–556CrossRefPubMed
41.
go back to reference Tucker SL, Mohan R, Liengsawangwong R et al (2013) Predicting pneumonitis risk: a dosimetric alternative to mean lung dose. Int J Radiat Oncol Biol Phys 85:522–527CrossRefPubMed Tucker SL, Mohan R, Liengsawangwong R et al (2013) Predicting pneumonitis risk: a dosimetric alternative to mean lung dose. Int J Radiat Oncol Biol Phys 85:522–527CrossRefPubMed
42.
go back to reference Gordon JJ, Snyder K, Zhong H et al (2015) Extracting the normal lung dose–response curve from clinical DVH data: a possible role for low dose hyper-radiosensitivity, increased radioresistance. Phys Med Biol 60:6719–6732CrossRefPubMedPubMedCentral Gordon JJ, Snyder K, Zhong H et al (2015) Extracting the normal lung dose–response curve from clinical DVH data: a possible role for low dose hyper-radiosensitivity, increased radioresistance. Phys Med Biol 60:6719–6732CrossRefPubMedPubMedCentral
Metadata
Title
Non-coplanar VMAT combined with non-uniform dose prescription markedly reduces lung dose in breath-hold lung SBRT
Authors
Dr. Jens Fleckenstein
Judit Boda-Heggemann
Kerstin Siebenlist
Tanya Gudzheva
Natallia Prakofyeva
Frank Lohr
Frederik Wenz
Anna Simeonova-Chergou
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 9/2018
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-018-1316-0

Other articles of this Issue 9/2018

Strahlentherapie und Onkologie 9/2018 Go to the issue