Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

01-12-2020 | Research article

NMR and LCMS analytical platforms exhibited the nephroprotective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity in the in vitro condition

Authors: Ilya Iryani Mahmod, Intan Safinar Ismail, Noorjahan Banu Alitheen, Yahaya M. Normi, Faridah Abas, Alfi Khatib, Rudiyanto, Jalifah Latip

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

Clinacanthus nutans (C. nutans) Lind. locally known as Belalai Gajah or Sabah snake grass is a medicinal plant belonging to Acanthaceae family. In Asia, this plant is traditionally used for treating skin rashes, insects and snake bites, diabetes mellitus, fever and for diuretic effect. C. nutans has been reported to possess biological activities including anti-oxidant, anti-inflammation, anti-cancer, anti-diabetic and anti-viral activities.

Methods

Proton Nuclear Magnetic Resonance (1H NMR) and Liquid Chromatography Mass Spectroscopy (LCMS) coupled with multivariate data analysis were employed to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media in rat renal proximal tubular cells (NRK-52E).

Results

NMR and LCMS analysis highlighted choline, creatine, phosphocholine, valine, acetic acid, phenylalanine, leucine, glutamic acid, threonine, uridine and proline as the main metabolites which differentiated the cisplatin-induced group of NRK-52E from control cells extract. The corresponding media exhibited lactic acid, glutamine, glutamic acid and glucose-1-phosphate as the varied metabolites. The altered pathways perturbed by cisplatin nephrotoxic on NRK-52E cells included changes in amino acid metabolism, lipid metabolism and glycolysis.

Conclusion

The C. nutans aqueous extract (1000 μg/mL) exhibited the most potential nephroprotective effect against cisplatin toxicity on NRK-52E cell lines at 89% of viability. The protective effect could be seen through the changes of the metabolites such as choline, alanine and valine in the C. nutans pre-treated samples with those of the cisplatin-induced group.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61:223–42.PubMedCrossRef Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61:223–42.PubMedCrossRef
2.
go back to reference Kolfschoten I, Hulscher T, Schrier S, Houten V, Pinedo H, Boven E. Time-dependent changes in factors involved in the apoptotic process in human ovarian Cancer cells as a response to Cisplatin. Gynecol Oncol. 2002;84:404–12.PubMedCrossRef Kolfschoten I, Hulscher T, Schrier S, Houten V, Pinedo H, Boven E. Time-dependent changes in factors involved in the apoptotic process in human ovarian Cancer cells as a response to Cisplatin. Gynecol Oncol. 2002;84:404–12.PubMedCrossRef
3.
go back to reference Brillet G, Deray G, Jacquiaud C, Mignot L, Bunker D, Meillet D, et al. Long-term renal effect of Cisplatin in man. Am J Nephrol. 1994;14:81–4.PubMedCrossRef Brillet G, Deray G, Jacquiaud C, Mignot L, Bunker D, Meillet D, et al. Long-term renal effect of Cisplatin in man. Am J Nephrol. 1994;14:81–4.PubMedCrossRef
4.
go back to reference Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 2003;14:1–10.PubMedCrossRef Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 2003;14:1–10.PubMedCrossRef
6.
go back to reference Zhang L, Hanigan MH. Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther. 2003;306:988–94.PubMedCrossRef Zhang L, Hanigan MH. Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther. 2003;306:988–94.PubMedCrossRef
7.
go back to reference Gaikwad K, Dagle P, Choughule P, Joshi YM, KadamV A. Review on some nephroprotective medicinal plants. Int J of Pharm Sci Res. 2012;11:2451–4. Gaikwad K, Dagle P, Choughule P, Joshi YM, KadamV A. Review on some nephroprotective medicinal plants. Int J of Pharm Sci Res. 2012;11:2451–4.
8.
go back to reference Zangeneh MM, Zangeneh A, Tahvilian R, Moradi R. Evaluation of the nephroprotective effect of Glycyrrhiza glabra L aqueous extract on CCl4-induced nephrotoxicity in mice. Comp Clin Path. 2018;27:1119–26.CrossRef Zangeneh MM, Zangeneh A, Tahvilian R, Moradi R. Evaluation of the nephroprotective effect of Glycyrrhiza glabra L aqueous extract on CCl4-induced nephrotoxicity in mice. Comp Clin Path. 2018;27:1119–26.CrossRef
9.
go back to reference Zangeneh MM, Goodarzi N, Zangeneh A, Tahvilian R, Najafi F. Amelioration of renal structural changes in STZ-induced diabetic mice with ethanolic extract of Allium saralicum R.M. Fritsch. Comp Clin Path. 2018;27:861–7.CrossRef Zangeneh MM, Goodarzi N, Zangeneh A, Tahvilian R, Najafi F. Amelioration of renal structural changes in STZ-induced diabetic mice with ethanolic extract of Allium saralicum R.M. Fritsch. Comp Clin Path. 2018;27:861–7.CrossRef
10.
go back to reference Zangeneh MM, Zangeneh A, Amiri H, Amiri N, Tahvilian R, Moradi R, et al. Nephroprotective activity of Alyssum meniocoides Boiss aqueous extract on streptozotocin-induced diabetic nephrotoxicity in male mice. Comp Clin Path. 2018;27:1147–54.CrossRef Zangeneh MM, Zangeneh A, Amiri H, Amiri N, Tahvilian R, Moradi R, et al. Nephroprotective activity of Alyssum meniocoides Boiss aqueous extract on streptozotocin-induced diabetic nephrotoxicity in male mice. Comp Clin Path. 2018;27:1147–54.CrossRef
11.
go back to reference Adeneye AA, Benebo AS. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats. J Ethnopharmacol. 2008;118:318–23.PubMedCrossRef Adeneye AA, Benebo AS. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats. J Ethnopharmacol. 2008;118:318–23.PubMedCrossRef
12.
go back to reference Makni M, Chtourou Y, Garoui EM, Boudawara T, Fetoui H. Carbon tetrachloride-induced nephrotoxicity and DNA damage in rats: protective role of vanillin. Hum Exp Toxicol. 2012;31:844–52.PubMedCrossRef Makni M, Chtourou Y, Garoui EM, Boudawara T, Fetoui H. Carbon tetrachloride-induced nephrotoxicity and DNA damage in rats: protective role of vanillin. Hum Exp Toxicol. 2012;31:844–52.PubMedCrossRef
13.
go back to reference Naggayi M, Mukiibi N, Iliya E. The protective effects of aqueous extract of Carica papaya seeds in paracetamol induced nephrotoxicity in male wistar rats. Afr Health Sci. 2015;15:598–605.PubMedPubMedCentralCrossRef Naggayi M, Mukiibi N, Iliya E. The protective effects of aqueous extract of Carica papaya seeds in paracetamol induced nephrotoxicity in male wistar rats. Afr Health Sci. 2015;15:598–605.PubMedPubMedCentralCrossRef
14.
go back to reference Gajowik A, Dobrzyńska MM. Lycopene - antioxidant with radioprotective and anticancer properties. A review. Rocz Panstw Zakl Hig. 2014;65:263–71.PubMed Gajowik A, Dobrzyńska MM. Lycopene - antioxidant with radioprotective and anticancer properties. A review. Rocz Panstw Zakl Hig. 2014;65:263–71.PubMed
15.
go back to reference Mahmoodnia L, Mohammadi K, Masumi R. Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol. 2017;6:144–9.PubMedPubMedCentralCrossRef Mahmoodnia L, Mohammadi K, Masumi R. Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol. 2017;6:144–9.PubMedPubMedCentralCrossRef
16.
go back to reference Nematbakhsh M, Pezeshki Z, Eshraghi Jazi F, Mazaheri B, Moeini M, Safari T, et al. Cisplatin-induced nephrotoxicity; protective supplements and gender differences. Asian Pac J Cancer Prev. 2017;18:295–314.PubMedPubMedCentral Nematbakhsh M, Pezeshki Z, Eshraghi Jazi F, Mazaheri B, Moeini M, Safari T, et al. Cisplatin-induced nephrotoxicity; protective supplements and gender differences. Asian Pac J Cancer Prev. 2017;18:295–314.PubMedPubMedCentral
17.
go back to reference Aslam MS, Ahmad MS, Mamat ASOH. Review On phytochemical constituents and pharmacological activities of Clinacanthus Nutans. Int J Pharm Pharm Sci. 2015;7:2–5. Aslam MS, Ahmad MS, Mamat ASOH. Review On phytochemical constituents and pharmacological activities of Clinacanthus Nutans. Int J Pharm Pharm Sci. 2015;7:2–5.
18.
go back to reference Pannangpetch P, Pisamai L, Kukongviriyapan V, Upa K, Bunkerd K, Aromdee 841 C. Antioxidant activity and protective effect against oxidative hemolysis of 842 Clinacanthus nutans (Burm.F) Lindau. Songklanakarin J Sci Technol. 2007. p. 29. Pannangpetch P, Pisamai L, Kukongviriyapan V, Upa K, Bunkerd K, Aromdee 841 C. Antioxidant activity and protective effect against oxidative hemolysis of 842 Clinacanthus nutans (Burm.F) Lindau. Songklanakarin J Sci Technol. 2007. p. 29.
19.
go back to reference Nadarajan S, Imam M, Ooi DJ, Chan KW, ME N, Zawawi N, et al. Phenolic rich extract from Clinacanthus nutans attenuates hyperlipidemia-associated oxidative stress in rats. Oxidative Med Cell Longev. 2016;2016:1–16. Nadarajan S, Imam M, Ooi DJ, Chan KW, ME N, Zawawi N, et al. Phenolic rich extract from Clinacanthus nutans attenuates hyperlipidemia-associated oxidative stress in rats. Oxidative Med Cell Longev. 2016;2016:1–16.
20.
go back to reference Wanikiat P, Panthong A, Sujayanon P, Yoosook C, Rossi AG, Reutrakul V. The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. J Ethnopharmacol. 2008;116:234–44.PubMedCrossRef Wanikiat P, Panthong A, Sujayanon P, Yoosook C, Rossi AG, Reutrakul V. The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. J Ethnopharmacol. 2008;116:234–44.PubMedCrossRef
21.
go back to reference Kongkaew C, Chaiyakunapruk N. Efficacy of Clinacanthus nutans extracts in patients with herpes infection: systematic review and meta-analysis of randomised clinical trials. Complement Ther Med. 2011;19:47–53.PubMedCrossRef Kongkaew C, Chaiyakunapruk N. Efficacy of Clinacanthus nutans extracts in patients with herpes infection: systematic review and meta-analysis of randomised clinical trials. Complement Ther Med. 2011;19:47–53.PubMedCrossRef
22.
go back to reference Sangkitporn S, Chaiwat S, Balachandra K, Na-Ayudhaya T, Bunjob M, Jayavasu C. Treatment of herpes zoster with Clinacanthus nutans (BiPhya yaw) extract. J Med Assoc Thail. 1995;78:624–7. Sangkitporn S, Chaiwat S, Balachandra K, Na-Ayudhaya T, Bunjob M, Jayavasu C. Treatment of herpes zoster with Clinacanthus nutans (BiPhya yaw) extract. J Med Assoc Thail. 1995;78:624–7.
23.
go back to reference Teshima KI, Kaneko T, Ohtani K, Kasai R, Lhieochaiphant S, Picheansoonthon C, et al. Sulfur-containing glucosides from Clinacanthus nutans. Phytochemistry. 1998;48:831–5.CrossRef Teshima KI, Kaneko T, Ohtani K, Kasai R, Lhieochaiphant S, Picheansoonthon C, et al. Sulfur-containing glucosides from Clinacanthus nutans. Phytochemistry. 1998;48:831–5.CrossRef
24.
go back to reference Charuwichitratana S, Wongrattanapasson N, Timpatanapong P, Bunjob M. Herpes zoster: treatment with Clinacanthus nutans cream. Int J Dermatol. 1996;35:665–6.PubMedCrossRef Charuwichitratana S, Wongrattanapasson N, Timpatanapong P, Bunjob M. Herpes zoster: treatment with Clinacanthus nutans cream. Int J Dermatol. 1996;35:665–6.PubMedCrossRef
25.
go back to reference Sakdarat S, Shuyprom A, Pientong C, Ekalaksananan T, Thongchai S. Bioactive constituents from the leaves of Clinacanthus nutans Lindau. Bioorg Med Chem. 2009;17:1857–60.PubMedCrossRef Sakdarat S, Shuyprom A, Pientong C, Ekalaksananan T, Thongchai S. Bioactive constituents from the leaves of Clinacanthus nutans Lindau. Bioorg Med Chem. 2009;17:1857–60.PubMedCrossRef
26.
go back to reference Tuntiwachwuttikul P, Pootaeng-On Y, Phansa P, Taylor WC. Cerebrosides and a monoacylmonogalactosylglycerol from Clinacanthus nutans. Chem Pharm Bull (Tokyo). 2004;52:27–32.CrossRef Tuntiwachwuttikul P, Pootaeng-On Y, Phansa P, Taylor WC. Cerebrosides and a monoacylmonogalactosylglycerol from Clinacanthus nutans. Chem Pharm Bull (Tokyo). 2004;52:27–32.CrossRef
27.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRef Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRef
28.
go back to reference Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, et al. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal. 2014;25:342–9.PubMedCrossRef Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, et al. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal. 2014;25:342–9.PubMedCrossRef
30.
go back to reference Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, et al. ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res. 2012;318:238–50.PubMedCrossRef Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, et al. ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res. 2012;318:238–50.PubMedCrossRef
31.
go back to reference Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, et al. Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol BioSyst. 2011;7:247–57.PubMedCrossRef Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, et al. Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol BioSyst. 2011;7:247–57.PubMedCrossRef
32.
go back to reference Feng J, Li J, Wu H, Chen Z. Metabolic responses of HeLa cells to silica nanoparticles by NMR-based metabolomic analyses. Metabolomics. 2013;9:874–86.CrossRef Feng J, Li J, Wu H, Chen Z. Metabolic responses of HeLa cells to silica nanoparticles by NMR-based metabolomic analyses. Metabolomics. 2013;9:874–86.CrossRef
33.
go back to reference Wang H, Wang L, Zhang H, Deng P, Chen J, Zhou B, et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer. 2013;12:1–12.CrossRef Wang H, Wang L, Zhang H, Deng P, Chen J, Zhou B, et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer. 2013;12:1–12.CrossRef
34.
go back to reference Prathomya P, Prisingkorn W, Jakovlić I, Deng F-Y, Zhao Y-H, Wang W-M. 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala. Metabolomics. 2017;13:17.CrossRef Prathomya P, Prisingkorn W, Jakovlić I, Deng F-Y, Zhao Y-H, Wang W-M. 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala. Metabolomics. 2017;13:17.CrossRef
35.
go back to reference Danielsson R, Bylund D, Markides KE. Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography–mass spectrometry. Anal Chim Acta. 2002;454:167–84.CrossRef Danielsson R, Bylund D, Markides KE. Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography–mass spectrometry. Anal Chim Acta. 2002;454:167–84.CrossRef
37.
go back to reference Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--the human Metabolome database in 2013. Nucleic Acids Res. 2013;41:D801–7.PubMedCrossRef Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--the human Metabolome database in 2013. Nucleic Acids Res. 2013;41:D801–7.PubMedCrossRef
38.
go back to reference Zhang J, Bowers J, Liu L, Wei S, Gowda GAN, Hammoud Z, et al. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One. 2012;7:e30181.PubMedPubMedCentralCrossRef Zhang J, Bowers J, Liu L, Wei S, Gowda GAN, Hammoud Z, et al. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One. 2012;7:e30181.PubMedPubMedCentralCrossRef
39.
go back to reference Lagies S, Pichler R, Kaminski MM, Schlimpert M, Walz G, Lienkamp SS, et al. Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Sci Rep. 2018;8:3878.PubMedPubMedCentralCrossRef Lagies S, Pichler R, Kaminski MM, Schlimpert M, Walz G, Lienkamp SS, et al. Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Sci Rep. 2018;8:3878.PubMedPubMedCentralCrossRef
40.
go back to reference Heidemann HT, Müller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus EE. Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol. 1989;97:313–8.PubMedPubMedCentralCrossRef Heidemann HT, Müller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus EE. Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol. 1989;97:313–8.PubMedPubMedCentralCrossRef
41.
go back to reference Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–518.CrossRef Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–518.CrossRef
42.
go back to reference Zhang W, Hou J, Yan X, Leng J, Li R, Zhang J, et al. Platycodon grandiflorum saponins ameliorate cisplatin-induced acute nephrotoxicity through the NF-κB-mediated inflammation and PI3K/Akt/apoptosis signaling pathways. Nutrients. 2018;10:1328.PubMedCentralCrossRef Zhang W, Hou J, Yan X, Leng J, Li R, Zhang J, et al. Platycodon grandiflorum saponins ameliorate cisplatin-induced acute nephrotoxicity through the NF-κB-mediated inflammation and PI3K/Akt/apoptosis signaling pathways. Nutrients. 2018;10:1328.PubMedCentralCrossRef
43.
go back to reference Zablocki K, Miller SP, Garcia-Perez A, Burg MB. Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc Natl Acad Sci U S A. 1991;88:7820–4.PubMedPubMedCentralCrossRef Zablocki K, Miller SP, Garcia-Perez A, Burg MB. Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc Natl Acad Sci U S A. 1991;88:7820–4.PubMedPubMedCentralCrossRef
44.
go back to reference Niemann CU, Serkova NJ. Biochemical mechanisms of nephrotoxicity: application for metabolomics. Expert Opin Drug Metab Toxicol. 2007;3:527–44.PubMedCrossRef Niemann CU, Serkova NJ. Biochemical mechanisms of nephrotoxicity: application for metabolomics. Expert Opin Drug Metab Toxicol. 2007;3:527–44.PubMedCrossRef
45.
go back to reference Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 2006;69:2194–204.PubMedCrossRef Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 2006;69:2194–204.PubMedCrossRef
46.
go back to reference Xu EY, Perlina A, Vu H, Troth SP, Brennan RJ, Aslamkhan AG, et al. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem Res Toxicol. 2008;21:1548–61.PubMedCrossRef Xu EY, Perlina A, Vu H, Troth SP, Brennan RJ, Aslamkhan AG, et al. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem Res Toxicol. 2008;21:1548–61.PubMedCrossRef
47.
go back to reference Wu H, Cao L, Li F, Lian P, Zhao J. Multiple biomarkers of the cytotoxicity induced by BDE-47 in human embryonic kidney cells. Chemosphere. 2015;126:32–9.PubMedCrossRef Wu H, Cao L, Li F, Lian P, Zhao J. Multiple biomarkers of the cytotoxicity induced by BDE-47 in human embryonic kidney cells. Chemosphere. 2015;126:32–9.PubMedCrossRef
48.
go back to reference Wu H, Li X, Feng J, Li W, Li Z, Liao P, et al. Comparison of biochemical effects induced by Changle between male and female rats using NMR and ICP-MS techniques. J Rare Earths. 2006;24:108–14.CrossRef Wu H, Li X, Feng J, Li W, Li Z, Liao P, et al. Comparison of biochemical effects induced by Changle between male and female rats using NMR and ICP-MS techniques. J Rare Earths. 2006;24:108–14.CrossRef
49.
go back to reference Kim HS, Kim TH, Lee YJ, Ahn MY, Kim HS. Metabolomic profiling of cisplatin-induced nephrotoxicity in human normal kidney HK-2 cells. FASEB J. 2011;25:1087.12. Kim HS, Kim TH, Lee YJ, Ahn MY, Kim HS. Metabolomic profiling of cisplatin-induced nephrotoxicity in human normal kidney HK-2 cells. FASEB J. 2011;25:1087.12.
50.
go back to reference Wisløff H, Gharehnia B, Flåøyen A, Andersen K-J. Effects of 3-methoxy-2(5H)-furanone-containing extracts from Narthecium ossifragum (L.) Huds. On renal tubular cells in vitro. Toxicon. 2007;49:368–77.PubMedCrossRef Wisløff H, Gharehnia B, Flåøyen A, Andersen K-J. Effects of 3-methoxy-2(5H)-furanone-containing extracts from Narthecium ossifragum (L.) Huds. On renal tubular cells in vitro. Toxicon. 2007;49:368–77.PubMedCrossRef
51.
go back to reference Hagh-Nazari L, Goodarzi N, Zangeneh MM, Zangeneh A, Tahvilian R, Moradi R. Stereological study of kidney in streptozotocin-induced diabetic mice treated with ethanolic extract of Stevia rebaudiana (bitter fraction). Comp Clin Path. 2017;26:455–63.CrossRef Hagh-Nazari L, Goodarzi N, Zangeneh MM, Zangeneh A, Tahvilian R, Moradi R. Stereological study of kidney in streptozotocin-induced diabetic mice treated with ethanolic extract of Stevia rebaudiana (bitter fraction). Comp Clin Path. 2017;26:455–63.CrossRef
52.
go back to reference Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al. 1H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. Phytochem Anal. 2019;30:46–61.PubMedCrossRef Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al. 1H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. Phytochem Anal. 2019;30:46–61.PubMedCrossRef
53.
go back to reference Smyth JF, Bowman A, Perren T, Wilkinson P, Prescott RJ, Quinn KJ, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: results of a double-blind, randomised trial. Ann Oncol Off J Eur Soc Med Oncol. 1997;8:569–73.CrossRef Smyth JF, Bowman A, Perren T, Wilkinson P, Prescott RJ, Quinn KJ, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: results of a double-blind, randomised trial. Ann Oncol Off J Eur Soc Med Oncol. 1997;8:569–73.CrossRef
54.
go back to reference Anusuya N, Durgadevi P, Dhinek A, Mythily S. Nephroprotective effect of 951 ethanolic extract of garlic (Allium sativum l.) on cisplatin induced 952 nephrotoxicity in male wistar rats. Asian J Pharm Clin Res. 2013. p. 6. Anusuya N, Durgadevi P, Dhinek A, Mythily S. Nephroprotective effect of 951 ethanolic extract of garlic (Allium sativum l.) on cisplatin induced 952 nephrotoxicity in male wistar rats. Asian J Pharm Clin Res. 2013. p. 6.
Metadata
Title
NMR and LCMS analytical platforms exhibited the nephroprotective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity in the in vitro condition
Authors
Ilya Iryani Mahmod
Intan Safinar Ismail
Noorjahan Banu Alitheen
Yahaya M. Normi
Faridah Abas
Alfi Khatib
Rudiyanto
Jalifah Latip
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-03067-3

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue