Skip to main content
Top
Published in: Heart and Vessels 1/2012

01-01-2012 | Original Article

Nitric oxide effects depend on different mechanisms in different regions of the rat heart

Authors: Kursat Derici, Ufuk Samsar, Emine Demirel-Yilmaz

Published in: Heart and Vessels | Issue 1/2012

Login to get access

Abstract

The important role of nitric oxide (NO) in regulating cardiac functions has been investigated in prior research. However, NO-induced signaling mechanisms in the different regions of the heart have not been explored until now. In this study, the mechanism of NO effects on the spontaneously beating right atrium and left papillary muscle isolated from the rat heart was examined. The NO donor diethylamine NONOate (DEA/NO) (0.1–100 μM) depressed the resting and developed tensions, as well as the sinus rate, of the right atrium. The effect of DEA/NO on contractions of the right atrium was blocked by the soluble guanylate cyclase (sGC) inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one) (10 μM). The ATP-sensitive potassium channel (KATP) blocker glyburide (3 μM) reversed DEA/NO-induced decreases in the resting tension. The suppressor effect of DEA/NO on the sinus rate was inhibited only by the superoxide radical scavenger superoxide dismutase (25 U/ml). Neither the cGMP-dependent protein kinase (PKG) inhibitor KT5823 (0.1 μM) nor the cAMP-dependent protein kinase (PKA) inhibitor KT5720 (1 μM) changed DEA/NO responses in the right atrium. While the resting tension of the right atrium was decreased by the NO precursor l-arginine (1–100 μM), it was increased by the nitric oxide synthase inhibitor l-NMMA (0.1–100 μM). The sinus rate was not affected by l-arginine or l-NMMA. The left papillary muscle contraction was not influenced by any of these NO-related agents. These results show that high concentration NO-induced depression of the contraction of the right atrium is due to sGC and KATP channel activation, but suppression of the sinus rate depends on redox regulation. Our results may have important implications for the region-dependent functional disability of cardiac myocytes, as well as the regulation of heart performance in high NO-induced pathological conditions.
Literature
1.
go back to reference Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology pathophysiology and pharmacology. Pharmacol Rev 43(2):109–142PubMed Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology pathophysiology and pharmacology. Pharmacol Rev 43(2):109–142PubMed
2.
go back to reference Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79(3):363–380PubMed Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79(3):363–380PubMed
3.
go back to reference Shah AM, MacCarthy PA (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 86(1):49–86PubMedCrossRef Shah AM, MacCarthy PA (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 86(1):49–86PubMedCrossRef
4.
go back to reference Sarkar D, Vallance P, Harding SE (2001) Nitric oxide: not just a negative inotrope. Eur J Heart Fail 3(5):527–534PubMedCrossRef Sarkar D, Vallance P, Harding SE (2001) Nitric oxide: not just a negative inotrope. Eur J Heart Fail 3(5):527–534PubMedCrossRef
5.
go back to reference Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35(7):719–729PubMedCrossRef Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35(7):719–729PubMedCrossRef
6.
go back to reference Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398PubMedCrossRef Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398PubMedCrossRef
7.
go back to reference Massion PB, Pelat M, Belge C, Balligand JL (2005) Regulation of the mammalian heart function by nitric oxide. Comp Biochem Physiol A Mol Integr Physiol 142(2):144–150PubMedCrossRef Massion PB, Pelat M, Belge C, Balligand JL (2005) Regulation of the mammalian heart function by nitric oxide. Comp Biochem Physiol A Mol Integr Physiol 142(2):144–150PubMedCrossRef
8.
go back to reference Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75(2):315–326PubMedCrossRef Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75(2):315–326PubMedCrossRef
9.
go back to reference Endoh M, Yamashita S (1981) Differential responses to carbachol, sodium nitroprusside and 8-bromo-guanosine 3′,5′-monophosphate of canine atrial and ventricular muscle. Br J Pharmacol 73(2):393–399PubMed Endoh M, Yamashita S (1981) Differential responses to carbachol, sodium nitroprusside and 8-bromo-guanosine 3′,5′-monophosphate of canine atrial and ventricular muscle. Br J Pharmacol 73(2):393–399PubMed
10.
go back to reference Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265(1):H176–H182PubMed Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265(1):H176–H182PubMed
11.
go back to reference Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89(5):2070–2078PubMed Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89(5):2070–2078PubMed
12.
go back to reference Kennedy RH, Hicks KK, Brian JE Jr, Seifen E (1994) Nitric oxide has no chronotropic effect in right atria isolated from rat heart. Eur J Pharmacol 255(1–3):149–156PubMedCrossRef Kennedy RH, Hicks KK, Brian JE Jr, Seifen E (1994) Nitric oxide has no chronotropic effect in right atria isolated from rat heart. Eur J Pharmacol 255(1–3):149–156PubMedCrossRef
13.
go back to reference Mohan P, Sys SU, Brutsaert DL (1995) Positive inotropic effect of nitric oxide in myocardium. Int J Cardiol 50(3):233–237PubMedCrossRef Mohan P, Sys SU, Brutsaert DL (1995) Positive inotropic effect of nitric oxide in myocardium. Int J Cardiol 50(3):233–237PubMedCrossRef
14.
go back to reference Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93(6):1223–1229PubMed Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93(6):1223–1229PubMed
15.
go back to reference Wyeth RP, Temma K, Seifen E, Kennedy RH (1996) Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle. Pflugers Arch 432(4):678–684PubMedCrossRef Wyeth RP, Temma K, Seifen E, Kennedy RH (1996) Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle. Pflugers Arch 432(4):678–684PubMedCrossRef
16.
go back to reference Preckel B, Kojda G, Schlack W, Ebel D, Kottenberg K, Noack E, Thämer V (1997) Inotropic effects of glyceryl trinitrate and spontaneous NO donors in the dog heart. Circulation 96(8):2675–2682PubMed Preckel B, Kojda G, Schlack W, Ebel D, Kottenberg K, Noack E, Thämer V (1997) Inotropic effects of glyceryl trinitrate and spontaneous NO donors in the dog heart. Circulation 96(8):2675–2682PubMed
17.
go back to reference Kojda G, Kottenberg K, Noack E (1997) Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol 334(2):181–190PubMedCrossRef Kojda G, Kottenberg K, Noack E (1997) Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol 334(2):181–190PubMedCrossRef
18.
go back to reference Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res 81(1):60–68PubMed Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res 81(1):60–68PubMed
19.
go back to reference Flesch M, Kilter H, Cremers B, Lenz O, Südkamp M, Kuhn-Regnier F, Böhm M (1997) Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther 281(3):1340–1349PubMed Flesch M, Kilter H, Cremers B, Lenz O, Südkamp M, Kuhn-Regnier F, Böhm M (1997) Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther 281(3):1340–1349PubMed
20.
go back to reference Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84(9):1020–1031PubMed Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84(9):1020–1031PubMed
21.
go back to reference Choate JK, Paterson DJ (1999) Nitric oxide inhibits the positive chronotropic and inotropic responses to sympathetic nerve stimulation in the isolated guinea-pig atria. J Auton Nerv Syst 75(2):100–108PubMedCrossRef Choate JK, Paterson DJ (1999) Nitric oxide inhibits the positive chronotropic and inotropic responses to sympathetic nerve stimulation in the isolated guinea-pig atria. J Auton Nerv Syst 75(2):100–108PubMedCrossRef
22.
go back to reference Müller-Strahl G, Kottenberg K, Zimmer HG, Noack E, Kojda G (2000) Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart. J Physiol 522(2):311–320PubMedCrossRef Müller-Strahl G, Kottenberg K, Zimmer HG, Noack E, Kojda G (2000) Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart. J Physiol 522(2):311–320PubMedCrossRef
23.
go back to reference Sarkar D, Vallance P, Amirmansour C, Harding SE (2000) Positive inotropic effects of NO donors in isolated guinea-pig and human cardiomyocytes independent of NO species and cyclic nucleotides. Cardiovasc Res 48(3):430–439PubMedCrossRef Sarkar D, Vallance P, Amirmansour C, Harding SE (2000) Positive inotropic effects of NO donors in isolated guinea-pig and human cardiomyocytes independent of NO species and cyclic nucleotides. Cardiovasc Res 48(3):430–439PubMedCrossRef
24.
go back to reference Musialek P, Rigg L, Terrar DA, Paterson DJ, Casadei B (2000) Role of cGMP-inhibited phosphodiesterase and sarcoplasmic calcium in mediating the increase in basal heart rate with nitric oxide donors. J Mol Cell Cardiol 32(10):1831–1840PubMedCrossRef Musialek P, Rigg L, Terrar DA, Paterson DJ, Casadei B (2000) Role of cGMP-inhibited phosphodiesterase and sarcoplasmic calcium in mediating the increase in basal heart rate with nitric oxide donors. J Mol Cell Cardiol 32(10):1831–1840PubMedCrossRef
25.
go back to reference Joa JC, Tsai LM, Yang SN, Wu HL, Liu DD, Yang JM (2000) Sodium nitroprusside increases pacemaker rhythm of sinoatrial nodes via nitric oxide-cGMP pathway. Chin J Physiol 43(3):113–117PubMed Joa JC, Tsai LM, Yang SN, Wu HL, Liu DD, Yang JM (2000) Sodium nitroprusside increases pacemaker rhythm of sinoatrial nodes via nitric oxide-cGMP pathway. Chin J Physiol 43(3):113–117PubMed
26.
go back to reference Tatsumi T, Matoba S, Kawahara A, Keira N, Shiraishi J, Akashi K, Kobara M, Tanaka T, Katamura M, Nakagawa C, Ohta B, Shirayama T, Takeda K, Asayama J, Fliss H, Nakagawa M (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 35(5):1338–1346PubMedCrossRef Tatsumi T, Matoba S, Kawahara A, Keira N, Shiraishi J, Akashi K, Kobara M, Tanaka T, Katamura M, Nakagawa C, Ohta B, Shirayama T, Takeda K, Asayama J, Fliss H, Nakagawa M (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 35(5):1338–1346PubMedCrossRef
27.
go back to reference Imbrogno S, De Iuri L, Mazza R, Tota B (2001) Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. J Exp Biol 204(10):1719–1727PubMed Imbrogno S, De Iuri L, Mazza R, Tota B (2001) Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. J Exp Biol 204(10):1719–1727PubMed
28.
go back to reference Wegener JW, Gödecke A, Schrader J, Nawrath H (2002) Effects of nitric oxide donors on cardiac contractility in wild-type and myoglobin-deficient mice. Br J Pharmacol 136(3):415–420PubMedCrossRef Wegener JW, Gödecke A, Schrader J, Nawrath H (2002) Effects of nitric oxide donors on cardiac contractility in wild-type and myoglobin-deficient mice. Br J Pharmacol 136(3):415–420PubMedCrossRef
29.
go back to reference Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(2):457–467PubMedCrossRef Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(2):457–467PubMedCrossRef
30.
go back to reference Worthley MI, Horowitz JD, Zeitz CJ (2005) Lack of inotropic effect of nitric oxide on the rat myocardium. Clin Exp Pharmacol Physiol 32(7):526–530PubMedCrossRef Worthley MI, Horowitz JD, Zeitz CJ (2005) Lack of inotropic effect of nitric oxide on the rat myocardium. Clin Exp Pharmacol Physiol 32(7):526–530PubMedCrossRef
31.
go back to reference González DR, Fernández IC, Ordenes PP, Treuer AV, Eller G, Boric MP (2008) Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide 18(3):157–167PubMedCrossRef González DR, Fernández IC, Ordenes PP, Treuer AV, Eller G, Boric MP (2008) Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide 18(3):157–167PubMedCrossRef
32.
go back to reference Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41(3):514–523PubMedCrossRef Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41(3):514–523PubMedCrossRef
33.
go back to reference Wanstall JC, Homer KL, Doggrell SA (2005) Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol 3(1):41–53PubMedCrossRef Wanstall JC, Homer KL, Doggrell SA (2005) Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol 3(1):41–53PubMedCrossRef
34.
go back to reference Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81(10):779–793PubMedCrossRef Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81(10):779–793PubMedCrossRef
35.
go back to reference Malinski T (2005) Understanding nitric oxide physiology in the heart: a nanomedical approach. Am J Cardiol 96(7):13–24CrossRef Malinski T (2005) Understanding nitric oxide physiology in the heart: a nanomedical approach. Am J Cardiol 96(7):13–24CrossRef
36.
go back to reference Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115(3):509–517PubMed Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115(3):509–517PubMed
37.
go back to reference Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321PubMedCrossRef Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321PubMedCrossRef
38.
go back to reference Nawrath H, Bäumner D, Rupp J, Oelert H (1995) The ineffectiveness of the NO-cyclic GMP signaling pathway in the atrial myocardium. Br J Pharmacol 116(7):3061–3067PubMed Nawrath H, Bäumner D, Rupp J, Oelert H (1995) The ineffectiveness of the NO-cyclic GMP signaling pathway in the atrial myocardium. Br J Pharmacol 116(7):3061–3067PubMed
39.
go back to reference MacDonell KL, Diamond J (1997) Cyclic GMP-dependent protein kinase activation in the absence of negative inotropic effects in the rat ventricle. Br J Pharmacol 122(7):1425–1435PubMedCrossRef MacDonell KL, Diamond J (1997) Cyclic GMP-dependent protein kinase activation in the absence of negative inotropic effects in the rat ventricle. Br J Pharmacol 122(7):1425–1435PubMedCrossRef
40.
go back to reference Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H, Barry WH (2005) Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol 55(2):81–91PubMedCrossRef Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H, Barry WH (2005) Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol 55(2):81–91PubMedCrossRef
41.
go back to reference Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84(3):266–275PubMed Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84(3):266–275PubMed
42.
go back to reference Mooradian DL, Hutsell TC, Keefer LK (1995) Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 25(4):674–678PubMedCrossRef Mooradian DL, Hutsell TC, Keefer LK (1995) Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 25(4):674–678PubMedCrossRef
43.
go back to reference Schlossmann J, Feil R, Hofmann F (2003) Signaling through NO and cGMP-dependent protein kinases. Ann Med 35(1):21–27PubMedCrossRef Schlossmann J, Feil R, Hofmann F (2003) Signaling through NO and cGMP-dependent protein kinases. Ann Med 35(1):21–27PubMedCrossRef
44.
go back to reference Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828PubMedCrossRef Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828PubMedCrossRef
45.
go back to reference Kass DA, Takimoto E, Nagayama T, Champion HC (2007) Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 75(2):303–314PubMedCrossRef Kass DA, Takimoto E, Nagayama T, Champion HC (2007) Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 75(2):303–314PubMedCrossRef
46.
go back to reference Han J, Kim N, Kim E, Ho WK, Earm YE (2001) Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276(25):22140–22147PubMedCrossRef Han J, Kim N, Kim E, Ho WK, Earm YE (2001) Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276(25):22140–22147PubMedCrossRef
47.
go back to reference Chen CC, Lin YC, Chen SA, Luk HN, Ding PY, Chang MS, Chiang CE (2000) Shortening of cardiac action potentials in endotoxic shock in guinea pigs is caused by an increase in nitric oxide activity and activation of the adenosine triphosphate-sensitive potassium channel. Crit Care Med 28(6):1713–1720PubMedCrossRef Chen CC, Lin YC, Chen SA, Luk HN, Ding PY, Chang MS, Chiang CE (2000) Shortening of cardiac action potentials in endotoxic shock in guinea pigs is caused by an increase in nitric oxide activity and activation of the adenosine triphosphate-sensitive potassium channel. Crit Care Med 28(6):1713–1720PubMedCrossRef
48.
go back to reference Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 68(1):280–287PubMed Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 68(1):280–287PubMed
49.
go back to reference Shinbo A, Iijima T (1997) Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 120(8):1568–1574PubMedCrossRef Shinbo A, Iijima T (1997) Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 120(8):1568–1574PubMedCrossRef
50.
go back to reference Frein D, Schildknecht S, Bachschmid M, Ullrich V (2005) Redox regulation: a new challenge for pharmacology. Biochem Pharmacol 70(6):811–823PubMedCrossRef Frein D, Schildknecht S, Bachschmid M, Ullrich V (2005) Redox regulation: a new challenge for pharmacology. Biochem Pharmacol 70(6):811–823PubMedCrossRef
51.
go back to reference Ischiropoulos H, Gow A (2005) Pathophysiological functions of nitric oxide-mediated protein modifications. Toxicology 208(2):299–303PubMedCrossRef Ischiropoulos H, Gow A (2005) Pathophysiological functions of nitric oxide-mediated protein modifications. Toxicology 208(2):299–303PubMedCrossRef
52.
go back to reference Oyama J, Satoh S, Suematsu N, Kadokami T, Maeda T, Sugano M, Makino N (2010) Scavenging free radicals improves endothelial dysfunction in human coronary arteries in vivo. Heart Vessels 25(5):379–385PubMedCrossRef Oyama J, Satoh S, Suematsu N, Kadokami T, Maeda T, Sugano M, Makino N (2010) Scavenging free radicals improves endothelial dysfunction in human coronary arteries in vivo. Heart Vessels 25(5):379–385PubMedCrossRef
53.
go back to reference Herring N, Rigg L, Terrar DA, Paterson DJ (2001) NO-cGMP pathway increases the hyperpolarisation-activated current, I(f), and heart rate during adrenergic stimulation. Cardiovasc Res 52(3):446–453PubMedCrossRef Herring N, Rigg L, Terrar DA, Paterson DJ (2001) NO-cGMP pathway increases the hyperpolarisation-activated current, I(f), and heart rate during adrenergic stimulation. Cardiovasc Res 52(3):446–453PubMedCrossRef
54.
go back to reference Yoo S, Lee SH, Choi BH, Yeom JB, Ho WK, Earm YE (1998) Dual effect of nitric oxide on the hyperpolarization-activated inward current (I(f)) in sino-atrial node cells of the rabbit. J Mol Cell Cardiol 30(12):2729–2738PubMedCrossRef Yoo S, Lee SH, Choi BH, Yeom JB, Ho WK, Earm YE (1998) Dual effect of nitric oxide on the hyperpolarization-activated inward current (I(f)) in sino-atrial node cells of the rabbit. J Mol Cell Cardiol 30(12):2729–2738PubMedCrossRef
55.
go back to reference Satoh N, Nishimura M, Watanabe Y (1995) Electrophysiologic alterations in the rabbit nodal cells induced by membrane lipid peroxidation. Eur J Pharmacol 292(3–4):233–240PubMed Satoh N, Nishimura M, Watanabe Y (1995) Electrophysiologic alterations in the rabbit nodal cells induced by membrane lipid peroxidation. Eur J Pharmacol 292(3–4):233–240PubMed
56.
go back to reference Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54(3):188–195PubMedCrossRef Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54(3):188–195PubMedCrossRef
57.
go back to reference Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45(5):625–632PubMedCrossRef Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45(5):625–632PubMedCrossRef
58.
go back to reference Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96(4):1320–1329PubMed Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96(4):1320–1329PubMed
59.
go back to reference Kojda G, Kottenberg K, Nix P, Schlüter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101PubMed Kojda G, Kottenberg K, Nix P, Schlüter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101PubMed
60.
go back to reference Ishibashi T, Hamaguchi M, Kato K, Kawada T, Ohta H, Sasage H, Imai S (1993) Relationship between myoglobin contents and increases in cyclic GMP produced by glyceryl trinitrate and nitric oxide in rabbit aorta, right atrium and papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 347(5):553–561PubMedCrossRef Ishibashi T, Hamaguchi M, Kato K, Kawada T, Ohta H, Sasage H, Imai S (1993) Relationship between myoglobin contents and increases in cyclic GMP produced by glyceryl trinitrate and nitric oxide in rabbit aorta, right atrium and papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 347(5):553–561PubMedCrossRef
61.
go back to reference Price S, Evans TW, Mitchell JA (2002) Nitric oxide supports atrial function in sepsis: relevance to side effects of inhibitors in shock. Eur J Pharmacol 449(3):279–285PubMedCrossRef Price S, Evans TW, Mitchell JA (2002) Nitric oxide supports atrial function in sepsis: relevance to side effects of inhibitors in shock. Eur J Pharmacol 449(3):279–285PubMedCrossRef
62.
go back to reference Mani AR, Nahavandi A, Moosavi M, Safarinejad R, Dehpour AR (2002) Dual nitric oxide mechanisms of cholestasis-induced bradycardia in the rat. Clin Exp Pharmacol Physiol 29(10):905–908PubMedCrossRef Mani AR, Nahavandi A, Moosavi M, Safarinejad R, Dehpour AR (2002) Dual nitric oxide mechanisms of cholestasis-induced bradycardia in the rat. Clin Exp Pharmacol Physiol 29(10):905–908PubMedCrossRef
63.
go back to reference Balaszczuk AM, Arreche ND, Mc Laughlin M, Arranz C, Fellet AL (2006) Nitric oxide synthases are involved in the modulation of cardiovascular adaptation in hemorrhaged rats. Vasc Pharmacol 44(6):417–426CrossRef Balaszczuk AM, Arreche ND, Mc Laughlin M, Arranz C, Fellet AL (2006) Nitric oxide synthases are involved in the modulation of cardiovascular adaptation in hemorrhaged rats. Vasc Pharmacol 44(6):417–426CrossRef
64.
go back to reference Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24(1):22–26PubMedCrossRef Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24(1):22–26PubMedCrossRef
65.
go back to reference Umar S, van der Laarse A (2010) Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 333:191–201PubMedCrossRef Umar S, van der Laarse A (2010) Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 333:191–201PubMedCrossRef
Metadata
Title
Nitric oxide effects depend on different mechanisms in different regions of the rat heart
Authors
Kursat Derici
Ufuk Samsar
Emine Demirel-Yilmaz
Publication date
01-01-2012
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 1/2012
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-011-0116-6

Other articles of this Issue 1/2012

Heart and Vessels 1/2012 Go to the issue