Skip to main content
Top
Published in: BMC Medical Genetics 1/2015

Open Access 01-12-2015 | Research article

Next-generation-sequencing-based identification of familial hypercholesterolemia-related mutations in subjects with increased LDL–C levels in a latvian population

Authors: Ilze Radovica-Spalvina, Gustavs Latkovskis, Ivars Silamikelis, Davids Fridmanis, Ilze Elbere, Karlis Ventins, Guna Ozola, Andrejs Erglis, Janis Klovins

Published in: BMC Medical Genetics | Issue 1/2015

Login to get access

Abstract

Background

Familial hypercholesterolemia (FH) is one of the commonest monogenic disorders, predominantly inherited as an autosomal dominant trait. When untreated, it results in early coronary heart disease. The vast majority of FH remains undiagnosed in Latvia. The identification and early treatment of affected individuals remain a challenge worldwide. Most cases of FH are caused by mutations in one of four genes, APOB, LDLR, PCSK9, or LDLRAP1. The spectrum of disease-causing variants is very diverse and the variation detection panels usually used in its diagnosis cover only a minority of the disease-causing gene variants. However, DNA-based tests may provide an FH diagnosis for FH patients with no physical symptoms and with no known family history of the disease. Here, we evaluate the use of targeted next-generation sequencing (NGS) to identify cases of FH in a cohort of patients with coronary artery disease (CAD) and individuals with abnormal low-density lipoprotein–cholesterol (LDL–C) levels.

Methods

We used targeted amplification of the coding regions of LDLR, APOB, PCSK9, and LDLRAP1, followed by NGS, in 42 CAD patients (LDL–C, 4.1–7.2 mmol/L) and 50 individuals from a population-based cohort (LDL–C, 5.1–9.7 mmol/L).

Results

In total, 22 synonymous and 31 nonsynonymous variants, eight variants in close proximity (10 bp) to intron–exon boundaries, and 50 other variants were found. We identified four pathogenic mutations (p.(Arg3527Gln) in APOB, and p.(Gly20Arg), p.(Arg350*), and c.1706–10G > A in LDLR) in seven patients (7.6 %). Three possible pathogenic variants were also found in four patients.

Conclusion

NGS-based methods can be used to detect FH in high-risk individuals when they do not meet the defined clinical criteria.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burns F. A contribution to the study of the etiology of xanthomata. Arch Derm Syph. 1920;2:415–29.CrossRef Burns F. A contribution to the study of the etiology of xanthomata. Arch Derm Syph. 1920;2:415–29.CrossRef
2.
go back to reference De Castro-Oros I, Pocovi M, Civeira F. The genetic basis of familial hypercholesterolemia: inheritance, linkage, and mutations. Appl Clin Genet. 2010;3:53–64.PubMedPubMedCentral De Castro-Oros I, Pocovi M, Civeira F. The genetic basis of familial hypercholesterolemia: inheritance, linkage, and mutations. Appl Clin Genet. 2010;3:53–64.PubMedPubMedCentral
3.
go back to reference Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012;97(11):3956–64.CrossRefPubMed Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012;97(11):3956–64.CrossRefPubMed
4.
go back to reference Bhagavan NV. Medical biochemistry. 4th ed. San Diego: Harcourt/Academic Press; 2002. p. 1016. Bhagavan NV. Medical biochemistry. 4th ed. San Diego: Harcourt/Academic Press; 2002. p. 1016.
5.
7.
go back to reference Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995;91(9):2488–96.CrossRefPubMed Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995;91(9):2488–96.CrossRefPubMed
8.
go back to reference WHO, World Health Statistics 2013. World Health Organization, 2013, Geneva. WHO, World Health Statistics 2013. World Health Organization, 2013, Geneva.
9.
go back to reference Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol. 2004;160(5):407–20.CrossRefPubMed Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol. 2004;160(5):407–20.CrossRefPubMed
10.
go back to reference Graham CA, McClean E, Ward AJ, Beattie ED, Martin S, O'Kane M, et al. Mutation screening and genotype:phenotype correlation in familial hypercholesterolaemia. Atherosclerosis. 1999;147(2):309–16.CrossRefPubMed Graham CA, McClean E, Ward AJ, Beattie ED, Martin S, O'Kane M, et al. Mutation screening and genotype:phenotype correlation in familial hypercholesterolaemia. Atherosclerosis. 1999;147(2):309–16.CrossRefPubMed
11.
go back to reference WHO, HGP, Familial hypercholesterolemia: Report of a second WHO consultation. WHO, 1999. WHO/HGN/FH/Cons/99.2, Geneva. WHO, HGP, Familial hypercholesterolemia: Report of a second WHO consultation. WHO, 1999. WHO/HGN/FH/Cons/99.2, Geneva.
12.
go back to reference Graham CA, McIlhatton BP, Kirk CW, Beattie ED, Lyttle K, Hart P, et al. Genetic screening protocol for familial hypercholesterolemia which includes splicing defects gives an improved mutation detection rate. Atherosclerosis. 2005;182(2):331–40.CrossRefPubMed Graham CA, McIlhatton BP, Kirk CW, Beattie ED, Lyttle K, Hart P, et al. Genetic screening protocol for familial hypercholesterolemia which includes splicing defects gives an improved mutation detection rate. Atherosclerosis. 2005;182(2):331–40.CrossRefPubMed
13.
go back to reference Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, Soutar AK, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet. 2006;43(12):943–9.CrossRefPubMedPubMedCentral Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, Soutar AK, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet. 2006;43(12):943–9.CrossRefPubMedPubMedCentral
14.
go back to reference Innerarity TL, Mahley RW, Weisgraber KH, Bersot TP, Krauss RM, Vega GL, et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990;31(8):1337–49.PubMed Innerarity TL, Mahley RW, Weisgraber KH, Bersot TP, Krauss RM, Vega GL, et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990;31(8):1337–49.PubMed
15.
go back to reference Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci U S A. 1989;86(2):587–91.CrossRefPubMedPubMedCentral Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci U S A. 1989;86(2):587–91.CrossRefPubMedPubMedCentral
16.
go back to reference Fisher E, Scharnagl H, Hoffmann MM, Kusterer K, Wittmann D, Wieland H, et al. Mutations in the apolipoprotein (apo) B-100 receptor-binding region: detection of apo B-100 (Arg3500Trp) associated with two new haplotypes and evidence that apo B-100 (Glu3405Gln) diminishes receptor-mediated uptake of LDL. Clin Chem. 1999;45(7):1026–38.PubMed Fisher E, Scharnagl H, Hoffmann MM, Kusterer K, Wittmann D, Wieland H, et al. Mutations in the apolipoprotein (apo) B-100 receptor-binding region: detection of apo B-100 (Arg3500Trp) associated with two new haplotypes and evidence that apo B-100 (Glu3405Gln) diminishes receptor-mediated uptake of LDL. Clin Chem. 1999;45(7):1026–38.PubMed
17.
go back to reference Gaffney D, Reid JM, Cameron IM, Vass K, Caslake MJ, Shepherd J, et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler Thromb Vasc Biol. 1995;15(8):1025–9.CrossRefPubMed Gaffney D, Reid JM, Cameron IM, Vass K, Caslake MJ, Shepherd J, et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler Thromb Vasc Biol. 1995;15(8):1025–9.CrossRefPubMed
18.
go back to reference Chatzistefanidis D, Markoula S, Vartholomatos G, Milionis H, Miltiadous G, Georgiou I, et al. First Detection of Hypercholesterolemia Causing ApoB-100 R3527Q Mutation in a Family in Greece. Genet Syndr Gene Ther. 2013;4:6. Chatzistefanidis D, Markoula S, Vartholomatos G, Milionis H, Miltiadous G, Georgiou I, et al. First Detection of Hypercholesterolemia Causing ApoB-100 R3527Q Mutation in a Family in Greece. Genet Syndr Gene Ther. 2013;4:6.
19.
go back to reference Haddad L, Day IN, Hunt S, Williams RR, Humphries SE, Hopkins PN. Evidence for a third genetic locus causing familial hypercholesterolemia. A non-LDLR, non-APOB kindred. J Lipid Res. 1999;40(6):1113–22.PubMed Haddad L, Day IN, Hunt S, Williams RR, Humphries SE, Hopkins PN. Evidence for a third genetic locus causing familial hypercholesterolemia. A non-LDLR, non-APOB kindred. J Lipid Res. 1999;40(6):1113–22.PubMed
20.
go back to reference Varret M, Rabes JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F, et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet. 1999;64(5):1378–87.CrossRefPubMedPubMedCentral Varret M, Rabes JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F, et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet. 1999;64(5):1378–87.CrossRefPubMedPubMedCentral
21.
go back to reference bifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. bifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.
22.
go back to reference uliani G, Vigna GB, Corsini A, Maioli M, Romagnoni F, Fellin R. Severe hypercholesterolaemia: unusual inheritance in an Italian pedigree. Eur J Clin Invest. 1995;25(5):322–31. uliani G, Vigna GB, Corsini A, Maioli M, Romagnoni F, Fellin R. Severe hypercholesterolaemia: unusual inheritance in an Italian pedigree. Eur J Clin Invest. 1995;25(5):322–31.
23.
go back to reference Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292(5520):1394–8.CrossRefPubMed Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292(5520):1394–8.CrossRefPubMed
24.
go back to reference Arca M, Zuliani G, Wilund K, Campagna F, Fellin R, Bertolini S, et al. Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet. 2002;359(9309):841–7.CrossRefPubMed Arca M, Zuliani G, Wilund K, Campagna F, Fellin R, Bertolini S, et al. Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet. 2002;359(9309):841–7.CrossRefPubMed
25.
go back to reference Davis CG, Lehrman MA, Russell DW, Anderson RG, Brown MS, Goldstein JL. The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell. 1986;45(1):15–24.CrossRefPubMed Davis CG, Lehrman MA, Russell DW, Anderson RG, Brown MS, Goldstein JL. The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell. 1986;45(1):15–24.CrossRefPubMed
26.
go back to reference DeMott K. Clinical Guidelines and Evidence Review for Familial hypercholesterolaemia: the identification and management of adults and children with familial hypercholesterolaemia. 2008. National Collaborating Centre for Primary Care and Royal College of General Practitioners. DeMott K. Clinical Guidelines and Evidence Review for Familial hypercholesterolaemia: the identification and management of adults and children with familial hypercholesterolaemia. 2008. National Collaborating Centre for Primary Care and Royal College of General Practitioners.
27.
go back to reference Ignatovica V, Latkovskis G, Peculis R, Megnis K, Schioth HB, Vaivade I, et al. Single nucleotide polymorphisms of the purinergic 1 receptor are not associated with myocardial infarction in a Latvian population. Mol Biol Rep. 2011;39(2):1917–25.CrossRefPubMed Ignatovica V, Latkovskis G, Peculis R, Megnis K, Schioth HB, Vaivade I, et al. Single nucleotide polymorphisms of the purinergic 1 receptor are not associated with myocardial infarction in a Latvian population. Mol Biol Rep. 2011;39(2):1917–25.CrossRefPubMed
28.
go back to reference Radovica I, Berzins R, Latkovskis G, Fridmanis D, Nikitina-Zake L, Ventins K, et al. Evaluation of massive parallel sequencing as the diagnostic tool for Familial Hypercholesterolemia. Proceedings of the Latvian Academy of Sciences Section B Natural, Exact, and Applied Sciences. 2014;68(3 (690)):20–6. Radovica I, Berzins R, Latkovskis G, Fridmanis D, Nikitina-Zake L, Ventins K, et al. Evaluation of massive parallel sequencing as the diagnostic tool for Familial Hypercholesterolemia. Proceedings of the Latvian Academy of Sciences Section B Natural, Exact, and Applied Sciences. 2014;68(3 (690)):20–6.
29.
go back to reference Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.CrossRefPubMed Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.CrossRefPubMed
30.
go back to reference Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2012;14(2):178–92.CrossRefPubMedPubMedCentral Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2012;14(2):178–92.CrossRefPubMedPubMedCentral
31.
go back to reference Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.CrossRefPubMedPubMedCentral Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.CrossRefPubMedPubMedCentral
32.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
33.
go back to reference Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.CrossRefPubMed Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.CrossRefPubMed
34.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRefPubMed Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRefPubMed
35.
go back to reference Chen R and Butte AJ. The reference human genome demonstrates high risk of type 1 diabetes and other disorders. Pac Symp Biocomput, 2010;p. 231–42. Chen R and Butte AJ. The reference human genome demonstrates high risk of type 1 diabetes and other disorders. Pac Symp Biocomput, 2010;p. 231–42.
36.
go back to reference Lombardi P, Sijbrands EJ, van de Giessen K, Smelt AH, Kastelein JJ, Frants RR, et al. Mutations in the low density lipoprotein receptor gene of familial hypercholesterolemic patients detected by denaturing gradient gel electrophoresis and direct sequencing. J Lipid Res. 1995;36(4):860–7. Lombardi P, Sijbrands EJ, van de Giessen K, Smelt AH, Kastelein JJ, Frants RR, et al. Mutations in the low density lipoprotein receptor gene of familial hypercholesterolemic patients detected by denaturing gradient gel electrophoresis and direct sequencing. J Lipid Res. 1995;36(4):860–7.
37.
go back to reference Solberg K, Rodningen OK, Tonstad S, Ose L, Leren TP. Familial hypercholesterolaemia caused by a non-sense mutation in codon 329 of the LDL receptor gene. Scand J Clin Lab Invest. 1994;54(8):605–9. abstract.CrossRefPubMed Solberg K, Rodningen OK, Tonstad S, Ose L, Leren TP. Familial hypercholesterolaemia caused by a non-sense mutation in codon 329 of the LDL receptor gene. Scand J Clin Lab Invest. 1994;54(8):605–9. abstract.CrossRefPubMed
38.
go back to reference Amsellem S, Briffaut D, Carrie A, Rabes JP, Girardet JP, Fredenrich A, et al. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet. 2002;111(6):501–10.CrossRefPubMed Amsellem S, Briffaut D, Carrie A, Rabes JP, Girardet JP, Fredenrich A, et al. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet. 2002;111(6):501–10.CrossRefPubMed
39.
go back to reference Salazar LA, Hirata MH, Cavalli SA, Nakandakare ER, Forti N, Diament J, et al. Molecular basis of familial hypercholesterolemia in Brazil: Identification of seven novel LDLR gene mutations. Hum Mutat. 2002;19(4):462–3.CrossRefPubMed Salazar LA, Hirata MH, Cavalli SA, Nakandakare ER, Forti N, Diament J, et al. Molecular basis of familial hypercholesterolemia in Brazil: Identification of seven novel LDLR gene mutations. Hum Mutat. 2002;19(4):462–3.CrossRefPubMed
40.
go back to reference Laurie AD, Scott RS, George PM. Genetic screening of patients with familial hypercholesterolaemia (FH): a New Zealand perspective. Atheroscler Suppl. 2004;5(5):13–5.CrossRefPubMed Laurie AD, Scott RS, George PM. Genetic screening of patients with familial hypercholesterolaemia (FH): a New Zealand perspective. Atheroscler Suppl. 2004;5(5):13–5.CrossRefPubMed
41.
go back to reference Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat. 2005;26(6):550–6.CrossRefPubMed Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat. 2005;26(6):550–6.CrossRefPubMed
42.
go back to reference Sozen MM, Whittall R, Oner C, Tokatli A, Kalkanoglu HS, Dursun A, et al. The molecular basis of familial hypercholesterolaemia in Turkish patients. Atherosclerosis. 2005;180(1):63–71.CrossRefPubMed Sozen MM, Whittall R, Oner C, Tokatli A, Kalkanoglu HS, Dursun A, et al. The molecular basis of familial hypercholesterolaemia in Turkish patients. Atherosclerosis. 2005;180(1):63–71.CrossRefPubMed
43.
go back to reference Widhalm K, Dirisamer A, Lindemayr A, Kostner G. Diagnosis of families with familial hypercholesterolaemia and/or Apo B-100 defect by means of DNA analysis of LDL-receptor gene mutations. J Inherit Metab Dis. 2007;30(2):239–47.CrossRefPubMed Widhalm K, Dirisamer A, Lindemayr A, Kostner G. Diagnosis of families with familial hypercholesterolaemia and/or Apo B-100 defect by means of DNA analysis of LDL-receptor gene mutations. J Inherit Metab Dis. 2007;30(2):239–47.CrossRefPubMed
44.
go back to reference Alonso R, Defesche JC, Tejedor D, Castillo S, Stef M, Mata N, et al. Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform. Clin Biochem. 2009;42(9):899–903.CrossRefPubMed Alonso R, Defesche JC, Tejedor D, Castillo S, Stef M, Mata N, et al. Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform. Clin Biochem. 2009;42(9):899–903.CrossRefPubMed
45.
go back to reference Brusgaard K, Jordan P, Hansen H, Hansen AB, Horder M. Molecular genetic analysis of 1053 Danish individuals with clinical signs of familial hypercholesterolemia. Clin Genet. 2006;69(3):277–83. Brusgaard K, Jordan P, Hansen H, Hansen AB, Horder M. Molecular genetic analysis of 1053 Danish individuals with clinical signs of familial hypercholesterolemia. Clin Genet. 2006;69(3):277–83.
46.
go back to reference Cenarro A, Jensen HK, Casao E, Civeira F, Gonzalez-Bonillo J, Rodriguez-Rey JC, et al. Identification of recurrent and novel mutations in the LDL receptor gene in Spanish patients with familial hypercholesterolemia. Mutations in brief no. 135. Online. Hum Mutat. 1998;11(5):413.CrossRefPubMed Cenarro A, Jensen HK, Casao E, Civeira F, Gonzalez-Bonillo J, Rodriguez-Rey JC, et al. Identification of recurrent and novel mutations in the LDL receptor gene in Spanish patients with familial hypercholesterolemia. Mutations in brief no. 135. Online. Hum Mutat. 1998;11(5):413.CrossRefPubMed
47.
go back to reference Dedoussis GV, Skoumas J, Pitsavos C, Choumerianou DM, Genschel J, Schmidt H, et al. FH clinical phenotype in Greek patients with LDL-R defective vs. negative mutations. Eur J Clin Invest. 2004;34(6):402–9. Dedoussis GV, Skoumas J, Pitsavos C, Choumerianou DM, Genschel J, Schmidt H, et al. FH clinical phenotype in Greek patients with LDL-R defective vs. negative mutations. Eur J Clin Invest. 2004;34(6):402–9.
48.
go back to reference Fouchier SW, Defesche JC, Umans-Eckenhausen MW, Kastelein JP. The molecular basis of familial hypercholesterolemia in The Netherlands. Hum Genet. 2001;109(6):602–15.CrossRefPubMed Fouchier SW, Defesche JC, Umans-Eckenhausen MW, Kastelein JP. The molecular basis of familial hypercholesterolemia in The Netherlands. Hum Genet. 2001;109(6):602–15.CrossRefPubMed
49.
go back to reference Tejedor D, Castillo S, Mozas P, Jimenez E, Lopez M, Tejedor MT, et al. Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia. Clin Chem. 2005;51(7):1137–44. Tejedor D, Castillo S, Mozas P, Jimenez E, Lopez M, Tejedor MT, et al. Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia. Clin Chem. 2005;51(7):1137–44.
50.
go back to reference Taylor A, Wang D, Patel K, Whittall R, Wood G, Farrer M, et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project. Clin Genet. 2010;77(6):572–80. Taylor A, Wang D, Patel K, Whittall R, Wood G, Farrer M, et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project. Clin Genet. 2010;77(6):572–80.
51.
go back to reference Benn M, Stene MC, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A. Common and rare alleles in apolipoprotein B contribute to plasma levels of low-density lipoprotein cholesterol in the general population. J Clin Endocrinol Metab. 2008;93(3):1038–45. Benn M, Stene MC, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A. Common and rare alleles in apolipoprotein B contribute to plasma levels of low-density lipoprotein cholesterol in the general population. J Clin Endocrinol Metab. 2008;93(3):1038–45.
52.
go back to reference Futema M, Whittall RA, Kiley A, Steel LK, Cooper JA, Badmus E, et al. Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis. 2013;229(1):161–8. Futema M, Whittall RA, Kiley A, Steel LK, Cooper JA, Badmus E, et al. Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis. 2013;229(1):161–8.
53.
go back to reference Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, Ban MR, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. 2010;42(8):684–7. Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, Ban MR, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. 2010;42(8):684–7.
54.
go back to reference Boren J, Ekstrom U, Agren B, Nilsson-Ehle P, Innerarity TL. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem. 2001;276(12):9214–8.CrossRefPubMed Boren J, Ekstrom U, Agren B, Nilsson-Ehle P, Innerarity TL. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem. 2001;276(12):9214–8.CrossRefPubMed
55.
go back to reference Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum Mol Genet. 2013;23(7):1817–28. Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum Mol Genet. 2013;23(7):1817–28.
56.
go back to reference Futema M, Shah S, Cooper JA, Li K, Whittall RA, Sharifi M, et al. Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. Clin Chem. 2014;61(1):231–8. Futema M, Shah S, Cooper JA, Li K, Whittall RA, Sharifi M, et al. Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. Clin Chem. 2014;61(1):231–8.
57.
go back to reference Radovica I, Fridmanis D, Silamikelis I, Nikitina-Zake L, Klovins J. Association between CETP, MLXIPL, and TOMM40 polymorphisms and serum lipid levels in a Latvian population. Meta Gene. 2015; 2:565–78. Radovica I, Fridmanis D, Silamikelis I, Nikitina-Zake L, Klovins J. Association between CETP, MLXIPL, and TOMM40 polymorphisms and serum lipid levels in a Latvian population. Meta Gene. 2015; 2:565–78.
58.
go back to reference Talmud PJ, Shah S, Whittall R, Futema M, Howard P, Cooper JA, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case–control study. Lancet. 2013;381(9874):1293–301. Talmud PJ, Shah S, Whittall R, Futema M, Howard P, Cooper JA, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case–control study. Lancet. 2013;381(9874):1293–301.
59.
go back to reference Futema M, Kumari M, Boustred C, Kivimaki M, Humphries SE. Would raising the total cholesterol diagnostic cut-off from 7.5 mmol/L to 9.3 mmol/L improve detection rate of patients with monogenic familial hypercholesterolaemia? Atherosclerosis. 2015;239(2):295–8. Futema M, Kumari M, Boustred C, Kivimaki M, Humphries SE. Would raising the total cholesterol diagnostic cut-off from 7.5 mmol/L to 9.3 mmol/L improve detection rate of patients with monogenic familial hypercholesterolaemia? Atherosclerosis. 2015;239(2):295–8.
60.
go back to reference Norsworthy PJ, Vandrovcova J, Thomas ER, Campbell A, Kerr SM, Biggs J, et al. Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study. BMC Med Genet. 2014;15:70. Norsworthy PJ, Vandrovcova J, Thomas ER, Campbell A, Kerr SM, Biggs J, et al. Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study. BMC Med Genet. 2014;15:70.
61.
go back to reference Vandrovcova J, Thomas ER, Atanur SS, Norsworthy PJ, Neuwirth C, Tan Y, et al. The use of next-generation sequencing in clinical diagnosis of familial hypercholesterolemia. Genet Med. 2013;15(12):948–57. Vandrovcova J, Thomas ER, Atanur SS, Norsworthy PJ, Neuwirth C, Tan Y, et al. The use of next-generation sequencing in clinical diagnosis of familial hypercholesterolemia. Genet Med. 2013;15(12):948–57.
62.
go back to reference Maglio C, Mancina RM, Motta BM, Stef M, Pirazzi C, Palacios L, et al. Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. J Intern Med. 276(4):396–403. Maglio C, Mancina RM, Motta BM, Stef M, Pirazzi C, Palacios L, et al. Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. J Intern Med. 276(4):396–403.
63.
go back to reference Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, et al. Testing for an unusual distribution of rare variants. PLoS Genet. 2011;7(3):e1001322.CrossRefPubMedPubMedCentral Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, et al. Testing for an unusual distribution of rare variants. PLoS Genet. 2011;7(3):e1001322.CrossRefPubMedPubMedCentral
64.
go back to reference den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15(1):7–12.CrossRef den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15(1):7–12.CrossRef
Metadata
Title
Next-generation-sequencing-based identification of familial hypercholesterolemia-related mutations in subjects with increased LDL–C levels in a latvian population
Authors
Ilze Radovica-Spalvina
Gustavs Latkovskis
Ivars Silamikelis
Davids Fridmanis
Ilze Elbere
Karlis Ventins
Guna Ozola
Andrejs Erglis
Janis Klovins
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2015
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-015-0230-x

Other articles of this Issue 1/2015

BMC Medical Genetics 1/2015 Go to the issue